Cerebral markers of neuroinflammation and neurodegeneration in hypertensive disorders during pregnancy
https://doi.org/10.15789/1563-0625-CMO-3169
Abstract
Preeclampsia/eclampsia during pregnancy and postpartum are the major risk factors for maternal and infant morbidity and mortality worldwide. At the same time, more than 70% of maternal deaths are of neurological origin, i.e., eclampsia, cerebral edema, intracranial hemorrhage and stroke. Generalized endothelial dysfunction caused by placental antiangiogenic factors leads to increased permeability of the blood-brain barrier and impaired autoregulation of cerebral circulation. Previous studies have shown that preeclampsia increases the risk of cerebrovascular and cardiovascular diseases, as well as cognitive impairments, up to evolving dementia in the future. According to a recently proposed neuropathophysiological hypothesis, preeclampsia is considered proteinopathy with impaired autophagy, thus contributing to brain depositions of wrongly folded pathological protein aggregates and antibodies to these proteins. Preclinical and clinical studies have shown that markers of neuroinflammation and neurodegeneration may reflect brain damage before the onset of severe neurological symptoms. However, is not entirely clear if these results correlate with long-term neurological complications. Over recent years, a certain understanding of preeclampsia pathophysiology in a broader sense has been gained. However, etiology and mechanisms of development of central nervous system dysfunction in this disease remain relevant for studies. A detailed systematic analysis of modern literature has been carried out, concerning the search for neuroinflammation and neurodegeneration markers in hypertensive pregnancy-associated disorders. The presented study used the following information databases: PubMed, Scopus, eLibrary, Cochrane Library, MEDLINE for the period from January 2015 to December 2024. This literature review provides information on pathogenetic role of the following neural biomarkers in preeclampsia: monocyte chemotactic protein 1 (MCP-1), brain-derived neurotrophic factor (BDNF), fractalkine (CX3CL1), neurospecific enolase (NSE), S100 calcium-binding protein B (S100B), visinin-like protein-1 (VILIP-1), tau protein (tai), phosphorylated tau protein for threonine 181 (p-tau181), a-synuclein (a-syn), amyloid b-40/42 (A 40/42), glial fibrillary acid protein (GFAP), light chains of neurofilaments (NfL). Usage of appropriate cerebral biomarkers will enable identification of patients at high risk for severe cerebral complications, optimization of their management and treatment during pregnancy, and development of effective strategies to prevent the development of neurological changes in the future.
About the Authors
E. S. TaskinaRussian Federation
PhD (Medicine), Associate Professor, Department of Ophthalmology
Chita
I. V. Kibalina
Russian Federation
PhD, MD (Medicine), Associate Professor, Director, Research Institute of Molecular Medicine, Head, B. Kuznik Department of Normal Physiology
Chita
V. A. Mudrov
Russian Federation
PhD, MD (Medicine), Associate Professor, Professor, Department of Obstetrics and Gynecology, Faculty of Pediatrics and Faculty of Additional Professional Education
Chita
S. O. Davydov
Russian Federation
PhD, MD (Medicine), Professor, Department of Traumatology and Orthopedics, Chita State Medical Academy, General Director
Chita
References
1. Belokrinitskaya T.E., Frolova N.I., Strambovskaya N.N., Kolmakova K.A. Prevalence and intergenic interactions of polymorphisms associated with arterial hypertension, endothelial dysfunction, hemostasis and folate metabolism disorders in severe preeclampsia. Zabaykalskiy meditsinskiy vestnik = Transbaikal Medical Bulletin, 2019, Vol. 1, pp. 1-13. (In Russ.)
2. Vasenina E.E., Levin O.S. Modern approaches to the clinical diagnosis and treatment of multisystem degenerations associated with the accumulation of tau protein. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal of Neurology and Psychiatry named after S.S. Korsakov, 2020, Vol. 120, no. 2, pp. 22-30. (In Russ.)
3. Yesin R.G., Safina D.R., Khakimova A.R., Yesin O.R. Neuroinflammation and neuropathology. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova = Journal of Neurology and Psychiatry named after S.S. Korsakov, 2021, Vol. 121, no. 4, pp. 107-112. (In Russ.)
4. Zhivkovich M., Ermolaeva E.V., Soboleva A.V., Samoilova E.M., Chudakova D.A., Baklaushev V.P. Brain neurotrophic factor BDNF: new data, functions and questions. Geny i kletki = Genes and Cells, 2024, Vol. 19, no. 1, pp. 61-84. (In Russ.)
5. Kondratyuk I.V., Padrul M.M., Karakulova Yu.V. Brain neurotrophic factor (BDNF) as a new way to diagnose severe preeclampsia and its complications. Akusherstvo i ginekologiya: novosti, mneniya, obuchenie = Obstetrics and Gynecology: News, Opinions, Training, 2022, Vol. 10, no. 4, pp. 13-17. (In Russ.)
6. Adank M.C., Hussainali R.F., Oosterveer L.C., Ikram M.A., Steegers E.A.P., Miller E.C., SchalekampTimmermans S. Hypertensive disorders of pregnancy and cognitive impairment: a Prospective Cohort Study. Neurology, 2021, Vol. 96, no. 5, pp. e709-718.
7. An J., Kim K., Lim H.J., Kim H.Y., Shin J., Park I., Cho I., Kim H.Y., Kim S., McLean C., Choi K.Y., Kim Y., Lee K.H., Kim J.S. Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nat. Commun., 2024, Vol. 15, no. 1, 1004. doi: 10.1038/s41467-024-44818-x.
8. Andersson M., Oras J., Thörn S.E., Karlsson O., Kälebo P., Zetterberg H., Blennow K., Bergman L. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One, 2021, Vol. 16, no. 2, e0246786. doi: 10.1371/journal.pone.0246786.
9. Arévalo J.C., Deogracias R. Mechanisms controlling the expression and secretion of BDNF. Biomolecules, 2023, Vol. 13, no. 5, 789. doi: 10.3390/biom13050789.
10. Babkina A.S., Lyubomudrov M.A., Golubev M.A., Pisarev M.V., Golubev A.M. Neuron-specific enolasewhat are we measuring? Int. J. Mol. Sci., 2024, Vol. 25, no. 9, 5040. doi: 10.3390/ijms25095040.
11. Barthélemy N.R., Horie K., Sato C., Bateman R.J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med., 2020, Vol. 217, no. 11, e20200861. doi: 10.1084/jem.20200861.
12. Basit S., Wohlfahrt J., Boyd H.A. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. B. M. J., 2018, Vol. 363, k4109. doi: 10.1136/bmj.k4109.
13. Bergman L., Hastie R., Bokström-Rees E., Zetterberg H., Blennow K., Schell S., Imberg H., Langenegger E., Moodley A., Walker S., Tong S., Cluver C. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstetrics. Gynecol., 2022, Vol. 227, no. 2, pp. 298.e1-298.e10.
14. Bergman L., Zetterberg H., Kaihola H., Hagberg H., Blennow K., Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia – A nested case control study. PLoS. One., 2018, Vol. 13, no. 5, e0196025. doi: 10.1371/journal.pone.0196025.
15. Biswas J., Khatun N., Bandyopadhyay R., Bhattacharya N., Maitra A., Mukherjee S., Mondal S. Optic nerve sheath diameter measurements using ultrasonography to diagnose raised intracranial pressure in preeclampsia: an observational study. J. Turk. Ger. Gynecol. Assoc., 2023, Vol. 24, no. 1, pp. 5-11.
16. Bokstrom-Rees E., Zetterberg H., Blennow K., Hastie R., Schell S., Cluver C., Bergman L. Correlation between cognitive assessment scores and circulating cerebral biomarkers in women with pre-eclampsia and eclampsia. Pregnancy Hypertens., 2023, Vol. 31, pp. 38-45.
17. Brzan Simenc G., Ambrozic J., Osredkar J., Gersak K., Lucovnik M. Correlation between cerebral biomarkers and optic nerve sheath diameter in patients with severe preeclampsia. Hypertens Pregnancy, 2021, Vol. 40, no. 1, pp. 9-14.
18. Buhimschi I.A., Nayeri U.A., Zhao G., Shook L.L., Pensalfini A., Funai E.F., Bernstein I.M., Glabe C.G., Buhimschi C.S. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 2014, Vol. 6, 245ra92. doi: 10.1126/scitranslmed.3008808.
19. Busche M.A., Hyman B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 2020, Vol. 23, 1183-1193.
20. Chen Y., Wang Y., Xu J., Hou T., Zhu J., Jiang Y., Sun L., Huang C., Sun L., Liu S. Multiplex assessment of serum chemokines CCL2, CCL5, CXCL1, CXCL10, and CXCL13 following traumatic brain injury. Inflammation, 2023, Vol. 46, no. 1, pp. 244-255.
21. Cheng S., Banerjee S., Daiello L.A., Nakashima A., Jash S., Huang Z., Drake J.D., Ernerudh J., Berg G., Padbury J., Saito S., Ott B.R., Sharma S. Novel blood test for early biomarkers of preeclampsia and Alzheimer’s disease. Sci. Rep., 2021, Vol. 11, no. 1, 15934. doi: 10.1038/s41598-021-95611-5.
22. Chiang Y.T., Seow K.M., Chen K.H. The Pathophysiological, genetic, and hormonal changes in preeclampsia: a systematic review of the molecular mechanisms. Int. J. Mol. Sci., 2024, Vol. 25, no. 8, pp. 45-32.
23. Correa J.D., Starling D., Teixeira A.L., Caramelli P., Silva T.A. Chemokines in CSF of Alzheimer’s disease patients. Arq. Neuropsiquiatr., 2011, Vol. 69, no. 3, pp. 455-459.
24. Escudero C., Kupka E., Ibanez B., Sandoval H., Troncoso F., Wikstrom A.K., López-Espíndola D., Acurio J., Torres-Vergara P., Bergman L. Brain vascular dysfunction in mothers and their children exposed to preeclampsia. Hypertension, 2023, Vol. 80, no. 2, pp. 242-256.
25. Evers K.S., Atkinson A., Barro C., Fisch U., Pfister M., Huhn E.A., Lapaire O., Kuhle J., Wellmann S. Neurofilament as Neuronal Injury Blood Marker in Preeclampsia. Hypertension, 2018, Vol. 71, no. 6, pp. 1178-1184.
26. Fang X., Liang Y., Zhang W., Wang Q., Chen J., Chen J., Lin Y., Chen Y., Yu L., Wang H., Chen D. Serum neurofilament light: a potential diagnostic and prognostic biomarker in obstetric posterior reversible encephalopathy syndrome. Mol. Neurobiol. 2021, Vol. 58, no. 12, pp. 6460-6470.
27. Friis T., Wikström A.K., Acurio J., León J., Zetterberg H., Blennow K., Nelander M., Åkerud H., Kaihola H., Cluver C., Troncoso F., Torres-Vergara P., Escudero C., Bergman L. Cerebral biomarkers and blood-brain barrier integrity in preeclampsia. Cells, 2022, Vol. 11, no. 5, 789. doi: 10.3390/cells11050789.
28. Gaur A., Rivet L., Mah E., Bawa K.K., Gallagher D., Herrmann N., Lanctôt K.L. Novel fluid biomarkers for mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev., 2023, Vol. 91, 102046. doi: 10.1016/j.arr.2023.102046.
29. Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol., 2017, Vol. 133, no. 5, pp. 665-704.
30. Hanin A., Cespedes J., Dorgham K., Pulluru Y., Gopaul M., Gorochov G., Hafler D.A., Navarro V., Gaspard N., Hirsch L.J. Cytokines in new-onset refractory status epilepticus predict outcomes. Ann. Neurol., 2023, Vol. 94, no. 1, pp. 75-90.
31. Im D., Choi T.S. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB Rep., 2024, Vol. 57, no. 6, pp. 263-272.
32. Iranzo A., Fairfoul G., Ayudhaya A.C.N., Serradell M., Gelpi E., Vilaseca I., Sanchez-Valle R., Gaig C., Santamaria J., Tolosa E., Riha R.L., Green A.J.E. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: A longitudinal observational study. Lancet Neurol., 2021, Vol. 20, pp. 203-212.
33. Janelidze S., Mattsson N., Palmqvist S., Smith R., Beach T.G., Serrano G.E., Chai X., Proctor N.K., Eichenlaub U., Zetterberg H., Blennow K., Reiman E.M., Stomrud E., Dage J.L., Hansson O. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med., 2020, Vol. 26, no. 3, pp. 379-386.
34. Joly-Amado A., Hunter J., Quadri Z., Zamudio F., Rocha-Rangel P.V., Chan D., Kesarwani A., Nash K., Lee D.C., Morgan D., Gordon M.N., Selenica M.B. CCL2 overexpression in the brain promotes glial activation and accelerates tau pathology in a mouse model of tauopathy. Front. Immunol., 2020, Vol. 11, 997. doi: 10.3389/fimmu.2020.00997.
35. Lambuk L., Mohd Lazaldin M.A., Ahmad S., Iezhitsa I., Agarwal R., Uskoković V., Mohamud R. Brainderived neurotrophic factor-mediated neuroprotection in glaucoma: a review of current state of the art. Front. Pharmacol., 2022, Vol. 13, 875662. doi: 10.3389/fphar.2022.875662.
36. Le L.T.H.L., Lee J., Im D., Park S., Hwang K.D., Lee J.H., Jiang Y., Lee Y.S., Suh Y.H., Kim H.I., Lee M.J. Selfaggregating tau fragments recapitulate pathologic phenotypes and neurotoxicity of alzheimer’s disease in mice. Adv. Sci., 2023, Vol. 10, no. 29, e2302035. doi: 10.1002/advs.202302035.
37. Lederer W., Dominguez C.A., Popovscaia M., Putz G., Humpel C. Cerebrospinal fluid levels of tau and phospho-tau-181 proteins during pregnancy. Pregnancy Hypertens, 2016, Vol. 64, pp. 384-387.
38. Leuzy A., Mattsson-Carlgren N., Palmqvist S., Janelidze S., Dage J.L., Hansson O. Blood-based biomarkers for Alzheimer’s disease. E.M.B.O. Mol. Med., 2022, Vol. 14, no. 1, e14408. doi: 10.15252/emmm.202114408.
39. Li L., Lou W., Li H., Zhu Y., Huang X. Upregulated C-C Motif chemokine ligand 2 promotes ischemic stroke via chemokine signaling pathway. Ann. Vasc. Surg., 2020, Vol. 68, pp. 476-486.
40. Lin Z., Shi J.L., Chen M., Zheng Z.M., Li M.Q., Shao J. CCL2: An important cytokine in normal and pathological pregnancies: A review. Front. Immunol., 2023, Vol. 13, 1053457. doi: 10.3389/fimmu.2022.1053457.
41. Medegan Fagla B., Buhimschi I.A. Protein misfolding in pregnancy: current insights, potential mechanisms, and implications for the pathogenesis of preeclampsia. Molecules, 2024, Vol. 29, no. 3, 610. doi: 10.3390/molecules29030610.
42. Mysona B.A., Zhao J., Smith S., Bollinger K.E. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp. Eye. Res., 2018, Vol. 167, pp. 25-30.
43. Nakamura A., Kaneko N., Villemagne V.L., Kato T., Doecke J., Doré V., Fowler C., Li Q.X., Martins R., Rowe C., Tomita T., Matsuzaki K., Ishii K., Ishii K., Arahata Y., Iwamoto S., Ito K., Tanaka K., Masters C.L., Yanagisawa K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, Vol. 554, pp. 249-254.
44. Nakashima A., Shima T., Aoki A., Kawaguchi M., Yasuda I., Tsuda S., Yoneda S., Yamaki-Ushijima A., Cheng S., Sharma S., Saito S. Placental autophagy failure: A risk factor for preeclampsia. J. Obstet. Gynaecol. Res., 2020, Vol. 46, no. 12, pp. 2497-2504.
45. O’Neal M.A. Women and the risk of Alzheimer’s disease. Front. Glob. Womens Health, 2024, Vol. 4, 1324522. doi: 10.3389/fgwh.2023.1324522.
46. Oeckl P., Halbgebauer S., Anderl-Straub S., Steinacker P., Huss A.M., Neugebauer H., von Arnim C.A.F., Diehl-Schmid J., Grimmer T., Kornhuber J., Lewczuk P., Danek A. Consortium for Frontotemporal Lobar Degeneration German; Ludolph AC, Otto M. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J. Alzheimers Dis., 2019, Vol. 67, no. 2, pp. 481-488.
47. Palmqvist S., Tideman P., Mattsson-Carlgren N., Schindler S.E., Smith R., Ossenkoppele R., Calling S., West T., Monane M., Verghese P.B., Braunstein J.B., Blennow K., Janelidze S., Stomrud E., Salvadó G., Hansson O. Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care. JAMA, 2024, Vol. 332, no. 15, pp. 1245-1257.
48. Pawelec P., Ziemka-Nalecz M., Sypecka J., Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells, 2020, Vol. 9, no. 10, 2277. doi: 10.3390/cells9102277.
49. Poon L.C., Nguyen-Hoang L., Smith G.N., Bergman L., O’Brien P., Hod M., Okong P., Kapur A., Maxwell C.V., McIntyre H.D., Jacobsson B., Algurjia E., Hanson M.A., Rosser M.L., Ma R.C., O’Reilly S.L., Regan L., Adam S., Medina V.P., McAuliffe F.M.; FIGO Committee on Impact of Pregnancy on Long-term Health and the FIGO Division of Maternal and Newborn Health. Hypertensive disorders of pregnancy and long-term cardiovascular health: FIGO Best Practice Advice. Int. J. Gynaecol. Obstet., 2023, Vol. 160, no. 1, pp. 22-34.
50. Qiu C., Li Z., Leigh D.A., Duan B., Stucky J.E., Kim N., Xie G., Lu K.P., Zhou X.Z. The role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front. Cell Dev. Biol., 2024, Vol. 12, 1343962. doi: 10.3389/fcell.2024.1343962.
51. Ryu S., Liu X., Guo T., Guo Z., Zhang J., Cao Y.Q. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain, 2023, Vol. 146, no. 10, pp. 4274-4291.
52. Samara A., Herlenius E., O’ Brien P., Khalil A. Potential role of neurofilament in COVID-19 and preeclampsia. Cell. Rep. Med., 2022, Vol. 3, no. 1, 100490. doi: 10.1016/j.xcrm.2021.100490.
53. Santaella A., Kuiperij H.B., van Rumund A., Esselink R.A.J., van Gool A.J., Bloem B.R., Verbeek M.M. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. N. P. J. Parkinsons Dis., 2020, Vol. 6, 21. doi: 10.1038/s41531-020-00124-z.
54. Schindler S.E., Bollinger J.G., Ovod V., Mawuenyega K.G., Li Y., Gordon B.A., Holtzman D.M., Morris J.C., Benzinger T.L.S., Xiong C., Fagan A.M., Bateman R.J. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology, 2019, Vol. 93, no. 17, pp. e1647-e1659.
55. Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol., 2021, Vol. 101, 107598. doi: 10.1016/j.intimp.2021.107598.
56. Szewczyk G., Pyzlak M., Pankiewicz K., Szczerba E., Stangret A., Szukiewicz D., Skoda M., Bierła J., Cukrowska B., Fijałkowska A. The potential association between a new angiogenic marker fractalkine and a placental vascularization in preeclampsia. Arch. Gynecol. Obstet., 2021, Vol. 304, no. 2, pp. 365-376.
57. Tan Z., Jiang J., Tian F., Peng J., Yang Z., Li S., Long X. Serum visinin-like protein 1 is a better biomarker than neuron-specific enolase for seizure-induced neuronal injury: a prospective and observational study. Front. Neurol., 2020, Vol. 11, 567587. doi: 10.3389/fneur.2020.567587.
58. Tikhonova M.A., Shvaikovskaya A.A., Zhanaeva S.Y., Moysak G.I., Akopyan A.A., Rzaev J.A., Danilenko K.V., Aftanas L.I. Concordance between the in vivo content of neurospecific proteins (BDNF, NSE, VILIP-1, S100B) in the hippocampus and blood in patients with epilepsy. Int. J. Mol. Sci., 2023, Vol. 25, no. 1, 502. doi: 10.3390/ijms25010502.
59. Ullah A., Zhao J., Singla R.K., Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front. Cell Dev. Biol., 2023, Vol. 11, 1272536. doi: 10.3389/fcell.2023.1272536.
60. Vafaei H., Faraji S., Ahmadi M., Tabei S.M.B., Fereidoni S., Shiravani Z., Hosseini S.N., Asadi N., Kasraeian M., Faraji A., Abbasi O., Gharesi-Fard B. Alteration in IFN-γ and CCL2 serum levels at first trimester of pregnancy contribute to development of preeclampsia and fetal growth restriction. Taiwan J. Obstet. Gynecol., 2023, Vol. 62, no. 1, pp. 71-76.
61. Walsh S.W., Nugent W.H., Archer K.J., Dulaimi M.A.L., Washington S.L., Strauss J.F. Epigenetic regulation of interleukin-17-related genes and their potential roles in neutrophil vascular infiltration in preeclampsia. Reprod. Sci., 2022, Vol. 29, no. 1, pp. 154-162. doi: 10.1007/s43032-021-00605-3.
62. Wang X., Shi Z., Qiu Y., Sun D., Zhou H. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank. BMC Med., 2024, Vol. 22, no. 1, 192. doi: 10.1186/s12916-024-03418-8.
63. Wang Y., Guo B., Zhao K., Yang L., Chen T. Correlation between cognitive impairment and serum phosphorylated tau181 protein in patients with preeclampsia. Front. Aging Neurosci., 2023, Vol. 15, 1148518. doi: 10.3389/fnagi.2023.1148518.
64. Yang Y., Arseni D., Zhang W., Huang M., Lövestam S., Schweighauser M., Kotecha A., Murzin A.G., PeakChew S.Y., Macdonald J., Lavenir I., Garringer H.J., Gelpi E., Newell K.L., Kovacs G.G., Vidal R., Ghetti B., RyskeldiFalcon B., Scheres S.H.W., Goedert M. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022, Vol. 375, no. 6577, pp. 167-172.
65. Youn Y.C. Blood amyloid-β oligomerization as a biomarker of Alzheimer’s Disease: A blinded validation study. J. Alzheimers Dis. 2020, Vol. 75, pp. 493-499.
66. Yuan A., Rao M.V., Nixon R.A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol., 2017, Vol. 9, no. 4, a018309. doi: 10.1101/cshperspect.a018309.
67. Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, Vol. 12, pp. 121-127.
Supplementary files
Review
For citations:
Taskina E.S., Kibalina I.V., Mudrov V.A., Davydov S.O. Cerebral markers of neuroinflammation and neurodegeneration in hypertensive disorders during pregnancy. Medical Immunology (Russia). 2025;27(4):713-722. (In Russ.) https://doi.org/10.15789/1563-0625-CMO-3169