Preview

Медицинская иммунология

Расширенный поиск

Гамма-дельта (γδ) T-клетки: происхождение, фенотип, функции

https://doi.org/10.15789/1563-0625-GDT-3160

Аннотация

Важнейшей функцией γδТ-клеток является контроль за реакциями врожденного и адаптивного иммунитета. Эти клетки также участвуют в противобактериальном, противовирусном, противоопухолевом иммунитете, регулируют воспаление, определяют гомеостаз барьерных тканей, регулируют взаимодействие клеток в зоне маточно-плацентарного контакта и осуществляют надзор за течением беременности, участвуют в патогенезе аутоиммунных заболеваний, участвуют в ранозаживлении, поддерживают целостность эпителия. За последние годы в литературе появилось большое количество данных о многообразии субпопуляций γδT-клеток, порой противоположных, или даже антагонистических, роли этих субпопуляций в физиологических и патологических процессах. Поэтому целью настоящего обзора явилась систематизация данных о биологии γδT-клеток, их происхождении, фенотипе, функциях и способах применения в клинике. В обзоре изложены современные представления о происхождении γδТ-клеток, стадиях их внутритимической дифференцировки, возможностях внетимической трансдифференцировки одних субпопуляций в другие. В обзоре приведена современная классификация субпопуляций γδТ-клеток человека, основанная на экспрессии γ- и δ-цепей Т-клеточного рецептора, описаны фенотип и свойства наиболее распространенных популяций Vδ1, Vδ2, Vδ3 Т-клеток. Приведена классификация γδТ-клеток человека, основанная на продукции ими цитокинов и экспрессии внутриклеточных мессенджеров, подробно описаны свойства и функции наиболее изученных субпопуляций: γδT1, γδT17, γδNKT, γδTreg, γδTAPC, γδTfh. В обзоре особое внимание уделяется фенотипу различных популяций, секреции ими цитокинов, приводятся данные об экспрессии поверхностных рецепторов γδТ-клеток человека и их функциях. В частности, рассмотрены особенности строения и лиганды γδТ-клеточного рецептора, а также рецепторы, контролирующие их активность (LIRB1/ILT2, KIR2DL1, KIR2DL2/3, KIR2DL4, KIR2DS1, KIR2DS2, KIR3DL2, KLRD1, NKG2A, NKG2C, NKG2D, NKG2F, NKp30, NKp44, NKp46, KLRC3, DNAM1, KLRG1/MAFA, FcγRIII, BTLA, PD1, TIGIT, VISTA, LAG3, TIM3, CTLA-4, 2B4, NK1 (NK28), KLRB1, TLR1, TLR2, TLR3, TLR5, TLR6, TLR7, TLR8), цитотоксичность в отношении клеток-мишеней, хемокиновые CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR9, CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, цитокиновые и адгезионные рецепторы. В обзоре приведена информация об участии субпопуляций γδТ-клеток человека в различных физиологических и патологических процессах, отмечена их неоднозначная роль в надзоре за опухолевым ростом. На основании описанных данных приводятся сведения о возможных перспективах применения γδТ-клеток в терапии некоторых заболеваний.

Об авторе

Д. И. Соколов
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»; ФБУН «Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии имени Пастера» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Россия

Соколов Дмитрий Игоревич – д.б.н., доцент, заведующий отделом иммунологии и межклеточных взаимодействий; ведущий научный сотрудник лаборатории молекулярной иммунологии 

199034, Санкт-Петербург, Менделеевская линия, 3.


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Список литературы

1. Agrati C., Alonzi T., De Santis R., Castilletti C., Abbate I., Capobianchi M.R., D’Offizi G., Siepi F., Fimia G.M., Tripodi M., Poccia F. Activation of Vgamma9Vdelta2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int. Immunol., 2006, Vol. 18, no. 1, pp. 11-18.

2. Alexander A.A., Maniar A., Cummings J.S., Hebbeler A.M., Schulze D.H., Gastman B.R., Pauza C.D., Strome S.E., Chapoval A.I. Isopentenyl pyrophosphate-activated CD56+ gammadelta T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res., 2008, Vol. 14, no. 13, pp. 4232-4240.

3. Anvari S., Watkin L., Rajapakshe K., Hassan O., Schuster K., Coarfa C., Davis C.M. Memory and naive gamma delta regulatory T-cell gene expression in the first 24-weeks of peanut oral immunotherapy. Clin. Immunol., 2021, Vol. 230, 108820. doi: 10.1016/j.clim.2021.108820.

4. Autran B., Triebel F., Katlama C., Rozenbaum W., Hercend T., Debre P. T cell receptor gamma/delta+ lymphocyte subsets during HIV infection. Clin. Exp. Immunol., 1989, Vol. 75, no. 2, pp. 206-210.

5. Bank I. The role of gamma delta t cells in autoimmune rheumatic diseases. Cells, 2020, Vol. 9, no. 2, 462. doi: 10.3390/cells9020462.

6. Bansal R.R., Mackay C.R., Moser B., Eberl M. IL-21 enhances the potential of human gammadelta T cells to provide B-cell help. Eur. J. Immunol., 2012, Vol. 42, no. 1, pp. 110-199.

7. Barisa M., Kramer A.M., Majani Y., Moulding D., Saraiva L., Bajaj-Elliott M., Anderson J., Gustafsson K.E. coli promotes human Vgamma9Vdelta2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner. Sci. Rep., 2017, Vol. 7, no. 1, 2805. doi: 10.1038/s41598-017-02886-8.

8. Barjon C., Michaud H.A., Fages A., Dejou C., Zampieri A., They L., Gennetier A., Sanchez F., Gros L., Eliaou J.F., Bonnefoy N., Lafont V. IL-21 promotes the development of a CD73-positive Vgamma9Vdelta2 T cell regulatory population. Oncoimmunology, 2017, Vol. 7, no. 1, e1379642. doi: 10.1080/2162402X.2017.1379642.

9. Bennett S.R., Carbone F.R., Karamalis F., Flavell R.A., Miller J.F., Heath W.R. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 1998, Vol. 393, no. 6684, pp. 478-480.

10. Benveniste P.M., Roy S., Nakatsugawa M., Chen E.L.Y., Nguyen L., Millar D.G., Ohashi P.S., Hirano N., Adams E.J., Zuniga-Pflucker J.C. Generation and molecular recognition of melanoma-associated antigen-specific human gammadelta T cells. Sci. Immunol., 2018, Vol. 3, no. 30, eaav4036. doi: 10.1126/sciimmunol.aav4036.

11. Birkinshaw R.W., Pellicci D.G., Cheng T.Y., Keller A.N., Sandoval-Romero M., Gras S., de Jong A., Uldrich A.P., Moody D.B., Godfrey D.I., Rossjohn J. alphabeta T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol., 2015, Vol. 16, no. 3, pp. 258-266.

12. Boehme L., Roels J., Taghon T. Development of gammadelta T cells in the thymus – A human perspective. Semin. Immunol., 2022, Vol. 61-64, 101662. doi: 10.1016/j.smim.2022.101662.

13. Bonneville M., O’Brien R.L., Born W.K. gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol., 2010, Vol. 10, no. 7, pp. 467-478.

14. Brandes M., Willimann K., Bioley G., Levy N., Eberl M., Luo M., Tampe R., Levy F., Romero P., Moser B. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc. Natl. Acad. Sci. USA, 2009, Vol. 106, no. 7, pp. 2307-2312.

15. Brandes M., Willimann K., Lang A.B., Nam K.H., Jin C., Brenner M.B., Morita C.T., Moser B. Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood, 2003, Vol. 102, no. 10, pp. 3693-3701.

16. Brandes M., Willimann K., Moser B. Professional antigen-presentation function by human gammadelta T Cells. Science, 2005, Vol. 309, no. 5732, pp. 264-268.

17. Buus T.B., Odum N., Geisler C., Lauritsen J.P.H. Three distinct developmental pathways for adaptive and two IFN-gamma-producing gammadelta T subsets in adult thymus. Nat. Commun., 2017, Vol. 8, no. 1, 1911. doi: 10.1038/s41467-017-01963-w.

18. Caccamo N., la Mendola C., Orlando V., Meraviglia S., Todaro M., Stassi G., Sireci G., Fournie J.J., Dieli F. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood, 2011, Vol. 118, no. 1, pp. 129-138.

19. Caccamo N., Meraviglia S., Ferlazzo V., Angelini D., Borsellino G., Poccia F., Battistini L., Dieli F., Salerno A. Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur. J. Immunol., 2005, Vol. 35, no. 6, pp. 1764-1772.

20. Caccamo N., Todaro M., La Manna M.P., Sireci G., Stassi G., Dieli F. IL-21 regulates the differentiation of a human gammadelta T cell subset equipped with B cell helper activity. PLoS One, 2012, Vol. 7, no. 7, e41940. doi: 10.1371/journal.pone.0041940.

21. Caccamo N., Todaro M., Sireci G., Meraviglia S., Stassi G., Dieli F. Mechanisms underlying lineage commitment and plasticity of human gammadelta T cells. Cell. Mol. Immunol., 2013, Vol. 10, no. 1, pp. 30-34.

22. Cai Y., Xue F., Quan C., Qu M., Liu N., Zhang Y., Fleming C., Hu X., Zhang H.G., Weichselbaum R., Fu Y.X., Tieri D., Rouchka E.C., Zheng J., Yan J. A Critical Role of the IL-1beta-IL-1R Signaling Pathway in Skin Inflammation and Psoriasis Pathogenesis. J. Invest. Dermatol., 2019, Vol. 139, no. 1, pp. 146-156.

23. Carman C.V., Springer T.A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol., 2004, Vol. 167, no. 2, pp. 377-388.

24. Cartwright J.E., Balarajah G. Trophoblast interactions with endothelial cells are increased by interleukin1beta and tumour necrosis factor alpha and involve vascular cell adhesion molecule-1 and alpha4beta1. Exp. Cell Res., 2005, Vol. 304, no. 1, pp. 328-336.

25. Casetti R., Agrati C., Wallace M., Sacchi A., Martini F., Martino A., Rinaldi A., Malkovsky M. Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation. J. Immunol., 2009, Vol. 183, no. 6, pp. 3574-3577.

26. Castella B., Foglietta M., Sciancalepore P., Rigoni M., Coscia M., Griggio V., Vitale C., Ferracini R., Saraci E., Omede P., Riganti C., Palumbo A., Boccadoro M., Massaia M. Anergic bone marrow Vgamma9Vdelta2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology, 2015, Vol. 4, no. 11, e1047580. doi: 10.1080/2162402X.2015.1047580.

27. Chabab G., Barjon C., Abdellaoui N., Salvador-Prince L., Dejou C., Michaud H.A., Boissiere-Michot F., Lopez-Crapez E., Jacot W., Pourquier D., Bonnefoy N., Lafont V. Identification of a regulatory Vdelta1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. J. Leukoc. Biol., 2020, Vol. 107, no. 6, pp. 1057-1067.

28. Chabab G., Barjon C., Bonnefoy N., Lafont V. Pro-tumor gammadelta T cells in human cancer: polarization, mechanisms of action, and implications for therapy. Front. Immunol., 2020, Vol. 11, 2186. doi: 10.3389/fimmu.2020.02186.

29. Chan K.F., Duarte J.D.G., Ostrouska S., Behren A. gammadelta T cells in the tumor microenvironmentinteractions with other immune cells. Front. Immunol., 2022, Vol. 13, 894315. doi: 10.3389/fimmu.2022.894315.

30. Chen W. TGF-beta regulation of T сells. Annu. Rev. Immunol., 2023, Vol. 41, no. 1, pp. 483-512.

31. Chien Y.H., Meyer C., Bonneville M. gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol., 2014, Vol. 32, pp. 121-155.

32. Christopoulos P., Dopfer E.P., Malkovsky M., Esser P.R., Schaefer H.E., Marx A., Kock S., Rupp N., Lorenz M.R., Schwarz K., Harder J., Martin S.F., Werner M., Bogdan C., Schamel W.W., Fisch P. A novel thymomaassociated immunodeficiency with increased naive T cells and reduced CD247 expression. J. Immunol., 2015, Vol. 194, no. 7, pp. 3045-3053.

33. Cibrian D., Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol., 2017, Vol. 47, no. 6, pp. 946-953.

34. Ciccone E., Viale O., Pende D., Malnati M., Battista Ferrara G., Barocci S., Moretta A., Moretta L. Specificity of human T lymphocytes expressing a gamma/delta T cell antigen receptor. Recognition of a polymorphic determinant of HLA class I molecules by a gamma/delta clone. Eur. J. Immunol., 1989, Vol. 19, no. 7, pp. 1267-1271.

35. Cipriani B., Borsellino G., Poccia F., Placido R., Tramonti D., Bach S., Battistini L., Brosnan C.F. Activation of C-C beta-chemokines in human peripheral blood gammadelta T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood, 2000, Vol. 95, no. 1, pp. 39-47.

36. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.S., Verstegen N.J.M., Ciampricotti M., Hawinkels L., Jonkers J., de Visser K.E. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 2015, Vol. 522, no. 7556, pp. 345-348.

37. Cox S.T., Haver D.S., Patterson W., Cambridge C.A., Turner T.R., Danby R.D., Hernandez D. Characterisation of RAET1E/ULBP4 exon 4 and 3’ untranslated region genetic architecture reveals further diversity and allelic polymorphism. HLA, 2024, Vol. 103, no. 4, e15457. doi: 10.1111/tan.15457.

38. Dai Y., Chen H., Mo C., Cui L., He W. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human gammadelta T cells to induce innate anti-tumor/virus immunity. J. Biol. Chem., 2012, Vol. 287, no. 20, pp. 16812-16819.

39. Daley D., Zambirinis C.P., Seifert L., Akkad N., Mohan N., Werba G., Barilla R., Torres-Hernandez A., Hundeyin M., Mani V.R.K., Avanzi A., Tippens D., Narayanan R., Jang J.E., Newman E., Pillarisetty V.G., Dustin M.L., Bar-Sagi D., Hajdu C., Miller G. gammadelta T Cells Support Pancreatic Oncogenesis by Restraining alphabeta T Cell Activation. Cell, 2016, Vol. 166, no. 6, pp. 1485-1499e15.

40. Davey M.S., Willcox C.R., Joyce S.P., Ladell K., Kasatskaya S.A., McLaren J.E., Hunter S., Salim M., Mohammed F., Price D.A., Chudakov D.M., Willcox B.E. Clonal selection in the human Vdelta1 T cell repertoire indicates gammadelta TCR-dependent adaptive immune surveillance. Nat. Commun., 2017, Vol. 8, 14760. doi: 10.1038/ncomms14760.

41. de Vries N.L., van de Haar J., Veninga V., Chalabi M., Ijsselsteijn M.E., van der Ploeg M., van den Bulk J., Ruano D., van den Berg J.G., Haanen J.B., Zeverijn L.J., Geurts B.S., de Wit G.F., Battaglia T.W., Gelderblom H., Verheul H.M.W., Schumacher T.N., Wessels L.F.A., Koning F., de Miranda N., Voest E.E. gammadelta T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature, 2023, Vol. 613, no. 7945, pp. 743-750.

42. DeBarros A., Chaves-Ferreira M., d’Orey F., Ribot J.C., Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. Eur. J. Immunol., 2011, Vol. 41, no. 1, pp. 195-201.

43. Dechanet J., Merville P., Lim A., Retiere C., Pitard V., Lafarge X., Michelson S., Meric C., Hallet M.M., Kourilsky P., Potaux L., Bonneville M., Moreau J.F. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J. Clin. Invest., 1999, Vol. 103, no. 10, pp. 1437-1449.

44. Deetz C.O., Hebbeler A.M., Propp N.A., Cairo C., Tikhonov I., Pauza C.D. Gamma interferon secretion by human Vgamma2Vdelta2 T cells after stimulation with antibody against the T-cell receptor plus the Toll-Like receptor 2 agonist Pam3Cys. Infect. Immun., 2006, Vol. 74, no. 8, pp. 4505-4511.

45. Degli-Esposti M.A., Smolak P.J., Walczak H., Waugh J., Huang C.P., DuBose R.F., Goodwin R.G., Smith C.A. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med., 1997, Vol. 186, no. 7, pp. 1165-1170.

46. Del Porto P., D’Amato M., Fiorillo M.T., Tuosto L., Piccolella E., Sorrentino R. Identification of a novel HLA-B27 subtype by restriction analysis of a cytotoxic gamma delta T cell clone. J. Immunol., 1994, Vol. 153, no. 7, pp. 3093-3100.

47. Deng S., Jiang Y., Luo L., Tang H., Hu X., Wu C., Tang J., Ge H., Gong X., Cai R., Wang G., Li X., Feng J. C5a enhances inflammation and chemotaxis of gammadelta T cells in malignant pleural effusion. Int. Immunopharmacol., 2024, Vol. 127, 111332. doi: 10.1016/j.intimp.2023.111332.

48. Deseke M., Prinz I. Ligand recognition by the gammadelta TCR and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol., 2020, Vol. 17, no. 9, pp. 914-924.

49. Deseke M., Rampoldi F., Sandrock I., Borst E., Boning H., Ssebyatika G.L., Jurgens C., Pluckebaum N., Beck M., Hassan A., Tan L., Demera A., Janssen A., Steinberger P., Koenecke C., Viejo-Borbolla A., Messerle M., Krey T., Prinz I. A CMV-induced adaptive human Vdelta1+ gammadelta T cell clone recognizes HLA-DR. J. Exp. Med., 2022, Vol. 219, no. 9, e20212525. doi: 10.1084/jem.20212525.

50. Deusch K., Luling F., Reich K., Classen M., Wagner H., Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur. J. Immunol., 1991, Vol. 21, no. 4, 1053-1059.

51. di Lorenzo B., Ravens S., Silva-Santos B. High-throughput analysis of the human thymic Vdelta1(+) T cell receptor repertoire. Sci. Data, 2019, Vol. 6, no. 1, 115. doi: 10.1038/s41597-019-0118-2.

52. Dieli F., Poccia F., Lipp M., Sireci G., Caccamo N., di Sano C., Salerno A. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J. Exp. Med., 2003, Vol. 198, no. 3, pp. 391-397.

53. Dieli F., Troye-Blomberg M., Ivanyi J., Fournie J.J., Krensky A.M., Bonneville M., Peyrat M.A., Caccamo N., Sireci G., Salerno A. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J. Infect. Dis., 2001, Vol. 184, no. 8, pp. 1082-1085.

54. Dimova T., Brouwer M., Gosselin F., Tassignon J., Leo O., Donner C., Marchant A., Vermijlen D. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc. Natl. Acad. Sci. USA, 2015, Vol. 112, no. 6, pp. E556-E565.

55. Dondero A., Pastorino F., Della Chiesa M., Corrias M.V., Morandi F., Pistoia V., Olive D., Bellora F., Locatelli F., Castellano A., Moretta L., Moretta A., Bottino C., Castriconi R. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology, 2016, Vol. 5, no. 1, e1064578. doi: 10.1080/2162402X.2015.1064578.

56. Du Y., Peng Q., Cheng D., Pan T., Sun W., Wang H., Ma X., He R., Zhang H., Cui Z., Feng X., Liu Z., Zhao T., Hu W., Shen L., Jiang W., Gao N., Martin B.N., Zhang C.J., Zhang Z., Wang C. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing gammadelta T cells. Nat. Commun., 2022, Vol. 13, no. 1, 231. doi: 10.1038/s41467-021-27936-8.

57. Dudal S., Turriere C., Bessoles S., Fontes P., Sanchez F., Liautard J., Liautard J.P., Lafont V. Release of LL-37 by activated human Vgamma9Vdelta2 T cells: a microbicidal weapon against Brucella suis. J. Immunol., 2006, Vol. 177, no. 8, pp. 5533-5539.

58. Edwards S.C., Hedley A., Hoevenaar W.H.M., Wiesheu R., Glauner T., Kilbey A., Shaw R., Boufea K., Batada N., Hatano S., Yoshikai Y., Blyth K., Miller C., Kirschner K., Coffelt S.B. PD-1 and TIM-3 differentially regulate subsets of mouse IL-17A-producing gammadelta T cells. J. Exp. Med., 2023, Vol. 220, no. 2, e20211431. doi: 10.1084/jem.20211431.

59. Fenoglio D., Poggi A., Catellani S., Battaglia F., Ferrera A., Setti M., Murdaca G., Zocchi M.R. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood, 2009, Vol. 113, no. 26, pp. 6611-6618.

60. Field K.R., Wragg K.M., Kent S.J., Lee W.S., Juno J.A. gammadelta T cells mediate robust anti-HIV functions during antiretroviral therapy regardless of immune checkpoint expression. Clin. Transl. Immunology, 2024, Vol. 13, no. 2, e1486. doi: 10.1002/cti2.1486.

61. Fischer M.A., Golovchenko N.B., Edelblum K.L. gammadelta T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol. Rev., 2020, Vol. 298, no. 1, pp. 165-180.

62. Flajnik M.F. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol., 2018, Vol. 18, no. 7, pp. 438-453.

63. Flemming A. Dectin-1 on colonic gammadelta T cells mediates vulnerability to psychosocial stress. Nat. Rev. Immunol., 2023, Vol. 23, no. 5, 271. doi: 10.1038/s41577-023-00876-8.

64. Fowler D.W., Copier J., Wilson N., Dalgleish A.G., Bodman-Smith M.D. Mycobacteria activate gammadelta T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy. Cancer Immunol. Immunother., 2012, Vol. 61, no. 4, pp. 535-547.

65. Frascoli M., Ferraj E., Miu B., Malin J., Spidale N.A., Cowan J., Shissler S.C., Brink R., Xu Y., Cyster J.G., Bhandoola A., Kang J., Reboldi A. Skin gammadelta T cell inflammatory responses are hardwired in the thymus by oxysterol sensing via GPR183 and calibrated by dietary cholesterol. Immunity, 2023, Vol. 56, no. 3, pp. 562-575e6.

66. Fuertes M.B., Domaica C.I., Zwirner N.W. Leveraging NKG2D ligands in immuno-oncology. Front. Immunol., 2021, Vol. 12, 713158. doi: 10.3389/fimmu.2021.713158

67. Ganapathy T., Radhakrishnan R., Sakshi S., Martin S. CAR gammadelta T cells for cancer immunotherapy. Is the field more yellow than green? Cancer Immunol. Immunother., 2023, Vol. 72, no. 2, pp. 277-286.

68. Gaur P., Misra R., Aggarwal A. Natural killer cell and gamma delta T cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis. Clin. Immunol., 2015, Vol. 161, no. 2, pp. 163-169.

69. Gertner-Dardenne J., Fauriat C., Orlanducci F., Thibult M.L., Pastor S., Fitzgibbon J., Bouabdallah R., Xerri L., Olive D. The co-receptor BTLA negatively regulates human Vgamma9Vdelta2 T-cell proliferation: a potential way of immune escape for lymphoma cells. Blood, 2013, Vol. 122, no. 6, pp. 922-931.

70. Girard P., Charles J., Cluzel C., Degeorges E., Manches O., Plumas J., De Fraipont F., Leccia M.T., Mouret S., Chaperot L., Aspord C. The features of circulating and tumor-infiltrating gammadelta T cells in melanoma patients display critical perturbations with prognostic impact on clinical outcome. Oncoimmunology, 2019, Vol. 8, no. 8, 1601483. doi: 10.1080/2162402X.2019.1601483.

71. Glatzel A., Wesch D., Schiemann F., Brandt E., Janssen O., Kabelitz D. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J. Immunol., 2002, Vol. 168, no. 10, pp. 4920-4929.

72. Godfrey D.I., Uldrich A.P., McCluskey J., Rossjohn J., Moody D.B. The burgeoning family of unconventional T cells. Nat. Immunol., 2015, Vol. 16, no. 11, pp. 1114-1123.

73. Gogoi D., Dar A.A., Chiplunkar S.V. Involvement of Notch in activation and effector functions of gammadelta T cells. J. Immunol., 2014, Vol. 192, no. 5, pp. 2054-2062.

74. Goyal A., O’Leary D., Duncan L.M. The significance of epidermal involvement in primary cutaneous gamma/delta (gammadelta) T-cell lymphoma: A systematic review and meta-analysis. J. Cutan. Pathol., 2021, Vol. 48, no. 12, pp. 1449-1454.

75. Groh V., Rhinehart R., Secrist H., Bauer S., Grabstein K.H., Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA, 1999, Vol. 96, no. 12, pp. 6879-6884.

76. Guo Y., Ziegler H.K., Safley S.A., Niesel D.W., Vaidya S., Klimpel G.R. Human T-cell recognition of Listeria monocytogenes: recognition of listeriolysin O by TcR alpha beta + and TcR gamma delta + T cells. Infect. Immun., 1995, Vol. 63, no. 6, pp. 2288-2294.

77. Hamada S., Umemura M., Shiono T., Tanaka K., Yahagi A., Begum M.D., Oshiro K., Okamoto Y., Watanabe H., Kawakami K., Roark C., Born W.K., O’Brien R., Ikuta K., Ishikawa H., Nakae S., Iwakura Y., Ohta T., Matsuzaki G. IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J. Immunol., 2008, Vol. 181, no. 5, pp. 3456-3463.

78. Harly C., Peigne C.M., Scotet E. Molecules and mechanisms implicated in the peculiar antigenic activation process of human Vgamma9Vdelta2 T cells. Front. Immunol., 2014, Vol. 5, 657. doi: 10.3389/fimmu.2014.00657.

79. Hayday A.C. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol., 2000, Vol. 18, pp. 975-1026.

80. Hilligan K.L., Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell. Mol. Immunol., 2020, Vol. 17, no. 6, pp. 587-599.

81. Himoudi N., Morgenstern D.A., Yan M., Vernay B., Saraiva L., Wu Y., Cohen C.J., Gustafsson K., Anderson J. Human gammadelta T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J. Immunol., 2012, Vol. 188, no. 4, pp. 1708-1716.

82. Holoshitz J., Vila L.M., Keroack B.J., McKinley D.R., Bayne N.K. Dual antigenic recognition by cloned human gamma delta T cells. J. Clin. Invest., 1992, Vol. 89, no. 1, pp. 308-314.

83. Hosokawa H., Rothenberg E.V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol., 2021, Vol. 21, no. 3, pp. 162-176.

84. Hu G., Wu P., Cheng P., Zhang Z., Wang Z., Yu X., Shao X., Wu D., Ye J., Zhang T., Wang X., Qiu F., Yan J., Huang J. Tumor-infiltrating CD39(+)gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology, 2017, Vol. 6, no. 2, e1277305. doi: 10.1080/2162402X.2016.1277305.

85. Hu W., Shang R., Yang J., Chen C., Liu Z., Liang G., He W., Luo G. Skin gammadelta T cells and their function in wound healing. Front. Immunol., 2022, Vol. 13, 875076. doi: 10.3389/fimmu.2022.875076.

86. Huang C., Zeng Y., Tu W. The role of gammadelta-T cells during human pregnancy. Am. J. Reprod. Immunol., 2017, Vol. 78, no. 2. doi: 10.1111/aji.12713.

87. Hueber W., Sands B.E., Lewitzky S., Vandemeulebroecke M., Reinisch W., Higgins P.D., Wehkamp J., Feagan B.G., Yao M.D., Karczewski M., Karczewski J., Pezous N., Bek S., Bruin G., Mellgard B., Berger C., Londei M., Bertolino A.P., Tougas G., Travis S.P., Secukinumab in Crohn’s Disease Study G. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut, 2012, Vol. 61, no. 12, pp. 1693-1700.

88. Hwang H.J., Lee J.J., Kang S.H., Suh J.K., Choi E.S., Jang S., Hwang S.H., Koh K.N., Im H.J., Kim N. The BTLA and PD-1 signaling pathways independently regulate the proliferation and cytotoxicity of human peripheral blood gammadelta T cells. Immun. Inflamm. Dis., 2021, Vol. 9, no. 1, pp. 274-287.

89. Iwasaki M., Tanaka Y., Kobayashi H., Murata-Hirai K., Miyabe H., Sugie T., Toi M., Minato N. Expression and function of PD-1 in human gammadelta T cells that recognize phosphoantigens. Eur. J. Immunol., 2011, Vol. 41, no. 2, pp. 345-355.

90. Jalali S., Stankovic S., Westall G.P., Reading P.C., Sullivan L.C., Brooks A.G. Examining the impact of immunosuppressive drugs on antibody-dependent cellular cytotoxicity (ADCC) of human peripheral blood natural killer (NK) cells and gamma delta (gammadelta) T cells. Transpl. Immunol., 2024, Vol. 82, 101962. doi: 10.1016/j.trim.2023.101962.

91. Jensen K.D., Su X., Shin S., Li L., Youssef S., Yamasaki S., Steinman L., Saito T., Locksley R.M., Davis M.M., Baumgarth N., Chien Y.H. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity, 2008, Vol. 29, no. 1, pp. 90-100.

92. Jia Z., Ren Z., Ye D., Li J., Xu Y., Liu H., Meng Z., Yang C., Chen X., Mao X., Luo X., Yang Z., Ma L., Deng A., Li Y., Han B., Wei J., Huang C., Xiang Z., Chen G., Li P., Ouyang J., Chen P., Luo O.J., Gao Y., Yin Z. Immune-Ageing Evaluation of Peripheral T and NK Lymphocyte Subsets in Chinese Healthy Adults. Phenomics, 2023, Vol. 3, no. 4, pp. 360-374.

93. Jin C., Lagoudas G.K., Zhao C., Bullman S., Bhutkar A., Hu B., Ameh S., Sandel D., Liang X.S., Mazzilli S., Whary M.T., Meyerson M., Germain R., Blainey P.C., Fox J.G., Jacks T. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell, 2019, Vol. 176, no. 5, pp. 998-1013.e16.

94. Jin Y., Xia M., Sun A., Saylor C.M., Xiong N. CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J. Immunol., 2010, Vol. 185, no. 10, pp. 5723-5731.

95. Kabelitz D., Serrano R., Kouakanou L., Peters C., Kalyan S. Cancer immunotherapy with gammadelta T cells: many paths ahead of us. Cell. Mol. Immunol., 2020, Vol. 17, no. 9, pp. 925-939.

96. Kabelitz D., Wesch D. Features and functions of gamma delta T lymphocytes: focus on chemokines and their receptors. Crit. Rev. Immunol., 2003, Vol. 23, no. 5-6, pp. 339-370.

97. Kallemeijn M.J., Kavelaars F.G., van der Klift M.Y., Wolvers-Tettero I.L.M., Valk P.J.M., van Dongen J.J.M., Langerak A.W. Next-generation sequencing analysis of the human TCRgammadelta+ T-cell repertoire reveals shifts in vgamma- and vdelta-usage in memory populations upon aging. Front. Immunol., 2018, Vol. 9, 448. doi: 10.3389/fimmu.2018.00448.

98. Kaminski H., Marseres G., Cosentino A., Guerville F., Pitard V., Fournie J.J., Merville P., Dechanet-Merville J., Couzi L. Understanding human gammadelta T cell biology toward a better management of cytomegalovirus infection. Immunol. Rev., 2020, Vol. 298, no. 1, pp. 264-288.

99. Kapp J.A., Kapp L.M., McKenna K.C., Lake J.P. gammadelta T-cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo. Immunology, 2004, Vol. 111, no. 2, pp. 155-164.

100. Karunakaran M.M., Willcox C.R., Salim M., Paletta D., Fichtner A.S., Noll A., Starick L., Nohren A., Begley C.R., Berwick K.A., Chaleil R.A.G., Pitard V., Dechanet-Merville J., Bates P.A., Kimmel B., Knowles T.J., Kunzmann V., Walter L., Jeeves M., Mohammed F., Willcox B.E., Herrmann T. Butyrophilin-2A1 directly binds germline-encoded regions of the Vgamma9Vdelta2 TCR and is essential for phosphoantigen sensing. Immunity, 2020, Vol. 52, no. 3, pp. 487-498.e6.

101. Karunathilaka A., Halstrom S., Price P., Holt M., Lutzky V.P., Doolan D.L., Kupz A., Bell S.C., Thomson R.M., Miles J.J., Ratnatunga C.N. CD161 expression defines new human gammadelta T cell subsets. Immun. Ageing, 2022, Vol. 19, no. 1, 11. doi: 10.1186/s12979-022-00269-w.

102. Ke Y., Kapp L.M., Kapp J.A. Inhibition of tumor rejection by gammadelta T cells and IL-10. Cell. Immunol., 2003, Vol. 221, no. 2, pp. 107-114.

103. Kenna T., Golden-Mason L., Norris S., Hegarty J.E., O’Farrelly C., Doherty D.G. Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. Clin. Immunol., 2004, Vol. 113, no. 1, pp. 56-63.

104. Khairallah C., Dechanet-Merville J., Capone M. Gammadelta T cell-mediated immunity to cytomegalovirus infection. Front. Immunol., 2017, Vol. 8, 105. doi: 10.3389/fimmu.2017.00105.

105. Kierkels G.J.J., Scheper W., Meringa A.D., Johanna I., Beringer D.X., Janssen A., Schiffler M., Aarts-Riemens T., Kramer L., Straetemans T., Heijhuurs S., Leusen J.H.W., San Jose E., Fuchs K., Griffioen M., Falkenburg J.H., Bongiovanni L., de Bruin A., Vargas-Diaz D., Altelaar M., Heck A.J.R., Shultz L.D., Ishikawa F., Nishimura M.I., Sebestyen Z., Kuball J. Identification of a tumor-specific allo-HLA-restricted gammadeltaTCR. Blood Adv., 2019, Vol. 3, no. 19, pp. 2870-2882.

106. Kim M., Kim H., Han M., Hwang H.J., Kim H., Im H.J., Kim N., Koh K.N. Characteristics of Human Peripheral Blood gammadelta T Cells Expanded With Zoledronate. Anticancer Res., 2021, Vol. 41, no. 12, pp. 6031-6038.

107. Kjer-Nielsen L., Patel O., Corbett A.J., Le Nours J., Meehan B., Liu L., Bhati M., Chen Z., Kostenko L., Reantragoon R., Williamson N.A., Purcell A.W., Dudek N.L., McConville M.J., O’Hair R.A., Khairallah G.N., Godfrey D.I., Fairlie D.P., Rossjohn J., McCluskey J. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012, Vol. 491, no. 7426, pp. 717-723.

108. Kong Y., Cao W., Xi X., Ma C., Cui L., He W. The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood, 2009, Vol. 114, no. 2, pp. 310-317.

109. Kornberg A., Botella T., Moon C.S., Rao S., Gelbs J., Cheng L., Miller J., Bacarella A.M., Garcia-Vilas J.A., Vargas J., Yu X., Krupska I., Bush E., Garcia-Carrasquillo R., Lebwohl B., Krishnareddy S., Lewis S., Green P.H.R., Bhagat G., Yan K.S., Han A. Gluten induces rapid reprogramming of natural memory alphabeta and gammadelta intraepithelial T cells to induce cytotoxicity in celiac disease. Sci. Immunol., 2023, Vol. 8, no. 85, eadf4312. doi: 10.1126/sciimmunol.adf4312.

110. Kouakanou L., Peters C., Sun Q., Floess S., Bhat J., Huehn J., Kabelitz D. Vitamin C supports conversion of human gammadelta T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci. Rep., 2020, Vol. 10, no. 1, 6550. doi: 10.1038/s41598-020-63572-w.

111. Kozbor D., Trinchieri G., Monos D.S., Isobe M., Russo G., Haney J.A., Zmijewski C., Croce C.M. Human TCR-gamma+/delta+, CD8+ T lymphocytes recognize tetanus toxoid in an MHC-restricted fashion. J. Exp. Med., 1989, Vol. 169, no. 5, pp. 1847-1851.

112. Kulicke C., Karamooz E., Lewinsohn D., Harriff M. Covering all the bases: complementary MR1 antigen presentation pathways sample diverse antigens and intracellular compartments. Front. Immunol., 2020, Vol. 11, 2034. doi: 10.3389/fimmu.2020.02034.

113. Lafont V., Sanchez F., Laprevotte E., Michaud H.A., Gros L., Eliaou J.F., Bonnefoy N. Plasticity of gammadelta T cells: impact on the anti-tumor response. Front. Immunol., 2014, Vol. 5, 622. doi: 10.3389/fimmu.2014.00622.

114. Laggner U., Di Meglio P., Perera G.K., Hundhausen C., Lacy K.E., Ali N., Smith C.H., Hayday A.C., Nickoloff B.J., Nestle F.O. Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J. Immunol., 2011, Vol. 187, no. 5, pp. 2783-2793.

115. Lalaoui N., Morle A., Merino D., Jacquemin G., Iessi E., Morizot A., Shirley S., Robert B., Solary E., Garrido C., Micheau O. TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS One, 2011, Vol. 6, no. 5, e19679. doi: 10.1371/journal.pone.0019679.

116. Lamour A., Jouen-Beades F., Lees O., Gilbert D., Le Loet X., Tron F. Analysis of T cell receptors in rheumatoid arthritis: the increased expression of HLA-DR antigen on circulating gamma delta+ T cells is correlated with disease activity. Clin. Exp. Immunol., 1992, Vol. 89, no. 2, pp. 217-222.

117. Lanca T., Costa M.F., Goncalves-Sousa N., Rei M., Grosso A.R., Penido C., Silva-Santos B. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic gammadelta T lymphocytes to tumor beds. J. Immunol., 2013, Vol. 190, no. 12, pp. 6673-6680.

118. Le Floch A.C., Rouviere M.S., Salem N., Ben Amara A., Orlanducci F., Vey N., Gorvel L., Chretien A.S., Olive D. Prognostic immune effector signature in adult acute lymphoblastic leukemia patients is dominated by gammadelta T Cells. Cells, 2023, Vol. 12, no. 13, 1693. doi: 10.3390/cells12131693.

119. Lee D., Dunn Z.S., Guo W., Rosenthal C.J., Penn N.E., Yu Y., Zhou K., Li Z., Ma F., Li M., Song T.C., Cen X., Li Y.R., Zhou J.J., Pellegrini M., Wang P., Yang L. Unlocking the potential of allogeneic Vdelta2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering. Nat. Commun., 2023, Vol. 14, no. 1, 6942. doi: 10.1038/s41467-023-42619-2.

120. Lee D., Rosenthal C.J., Penn N.E., Dunn Z.S., Zhou Y., Yang L. Human gammadelta T cell subsets and their clinical applications for cancer immunotherapy. Cancers, 2022, Vol. 14, no. 12, 3005. doi: 10.3390/cancers14123005.

121. Lee J.S., Tato C.M., Joyce-Shaikh B., Gulen M.F., Cayatte C., Chen Y., Blumenschein W.M., Judo M., Ayanoglu G., McClanahan T.K., Li X., Cua D.J. Interleukin-23-independent il-17 production regulates intestinal epithelial permeability. Immunity, 2015, Vol. 43, no. 4, pp. 727-738.

122. Lee M., Lee E., Han S.K., Choi Y.H., Kwon D.I., Choi H., Lee K., Park E.S., Rha M.S., Joo D.J., Shin E.C., Kim S., Kim J.K., Lee Y.J. Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat. Commun., 2020, Vol. 11, no. 1, 4367. doi: 10.1038/s41467-020-18155-8.

123. Leon-Lara X., Yang T., Fichtner A.S., Bruni E., von Kaisenberg C., Eiz-Vesper B., Dodoo D., Adu B., Ravens S. Evidence for an adult-like type 1-immunity phenotype of Vdelta1, Vdelta2 and Vdelta3 T Cells in ghanaian children with repeated exposure to malaria. Front. Immunol., 2022, Vol. 13, 807765. doi: 10.3389/fimmu.2022.807765.

124. Lepore M., Kalinichenko A., Calogero S., Kumar P., Paleja B., Schmaler M., Narang V., Zolezzi F., Poidinger M., Mori L., De Libero G. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife, 2017, Vol. 6, e24476. doi: 10.7554/eLife.24476.

125. Lesport E., Baudhuin J., Sousa S., LeMaoult J., Zamborlini A., Rouas-Freiss N., Carosella E.D., Favier B. Inhibition of human gamma delta [corrected] T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell. Mol. Life Sci., 2011, Vol. 68, no. 20, pp. 3385-3399.

126. Li X., Lu H., Gu Y., Zhang X., Zhang G., Shi T., Chen W. Tim-3 suppresses the killing effect of Vgamma9Vdelta2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp. Cell Res., 2020, Vol. 386, no. 1, 111719. doi: 10.1016/j.yexcr.2019.111719.

127. Li Y., Jiang S., Li J., Yin M., Yan F., Chen Y., Chen Y., Wu T., Cheng M., He Y., Liang H., Yu H., Qiao Q., Guo Z., Xu Y., Zhang Y., Xiang Z., Yin Z. Phenotypic changes of peripheral gammadelta T cell and its subsets in patients with coronary artery disease. Front. Immunol., 2022, Vol. 13, 900334. doi: 10.3389/fimmu.2022.900334.

128. Libera J., Wittner M., Kantowski M., Woost R., Eberhard J.M., de Heer J., Reher D., Huber S., Haag F., Schulze Zur Wiesch J. Decreased frequency of intestinal CD39(+) gammadelta(+) T cells with tissue-resident memory phenotype in inflammatory bowel disease. Front. Immunol., 2020, Vol. 11, 567472. doi: 10.3389/fimmu.2020.567472.

129. Liu B., He X., Wang Y., Huang J.W., Zheng Y.B., Li Y., Lu L.G. Bibliometric analysis of gammadelta T Cells as immune regulators in cancer prognosis. Front. Immunol., 2022, Vol. 13, 874640. doi: 10.3389/fimmu.2022.874640.

130. Liu J., Wu M., Yang Y., Wang Z., He S., Tian X., Wang H. gammadelta T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J. Transl. Med., 2024, Vol. 22, no. 1, 553. doi: 10.1186/s12967-024-05327-z.

131. Lo Presti E., Dieli F., Fournie J.J., Meraviglia S. Deciphering human gammadelta T cell response in cancer: Lessons from tumor-infiltrating gammadelta T cells. Immunol. Rev., 2020, Vol. 298, no. 1, pp. 153-164.

132. Lo Presti E., Dieli F., Meraviglia S. Tumor-Infiltrating gammadelta T lymphocytes: pathogenic role, clinical significance, and differential programing in the tumor microenvironment. Front. Immunol., 2014, Vol. 5, 607. doi: 10.3389/fimmu.2014.00607.

133. Ma C., Zhang Q., Ye J., Wang F., Zhang Y., Wevers E., Schwartz T., Hunborg P., Varvares M.A., Hoft D.F., Hsueh E.C., Peng G. Tumor-infiltrating gammadelta T lymphocytes predict clinical outcome in human breast cancer. J. Immunol., 2012, Vol. 189, no. 10, pp. 5029-5036.

134. Mangan B.A., Dunne M.R., O’Reilly V.P., Dunne P.J., Exley M.A., O’Shea D., Scotet E., Hogan A.E., Doherty D.G. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vdelta3 T cells. J. Immunol., 2013, Vol. 191, no. 1, pp. 30-34.

135. Maniar A., Zhang X., Lin W., Gastman B.R., Pauza C.D., Strome S.E., Chapoval A.I. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood, 2010, Vol. 116, no. 10, pp. 1726-1733.

136. Mao T.L., Miao C.H., Liao Y.J., Chen Y.J., Yeh C.Y., Liu C.L. Ex vivo expanded human Vgamma9Vdelta2 T-cells can suppress epithelial ovarian cancer cell growth. Int. J. Mol. Sci., 2019, Vol. 20, no. 5, 1139. doi: 10.3390/ijms20051139.

137. Mao Y., Yin S., Zhang J., Hu Y., Huang B., Cui L., Kang N., He W. A new effect of IL-4 on human gammadelta T cells: promoting regulatory Vdelta1 T cells via IL-10 production and inhibiting function of Vdelta2 T cells. Cell. Mol. Immunol., 2016, Vol. 13, no. 2, pp. 217-228.

138. Marlin R., Pappalardo A., Kaminski H., Willcox C.R., Pitard V., Netzer S., Khairallah C., Lomenech A.M., Harly C., Bonneville M., Moreau J.F., Scotet E., Willcox B.E., Faustin B., Dechanet-Merville J. Sensing of cell stress by human gammadelta TCR-dependent recognition of annexin A2. Proc. Natl. Acad. Sci. USA, 2017, Vol. 114, no. 12, pp. 3163-3168.

139. Martinet L., Jean C., Dietrich G., Fournie J.J., Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem. Pharmacol., 2010, Vol. 80, no. 6, pp. 838-845.

140. Matsuo Y., Tsujimura T., Drexler H.G. Proposal for the designation of the natural killer antigens-positive gammadelta T-cell subset as gammadelta NKT-cells: nomenclature based on immunoprofile. Hum. Cell, 2021, Vol. 34, no. 4, pp. 1278-1279.

141. McGinley A.M., Edwards S.C., Raverdeau M., Mills K.H.G. Th17 cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. J. Autoimmun., 2018, S0896-8411(18)30007-6. doi: 10.1016/j.jaut.2018.01.001.

142. McKenzie D.R., Hart R., Bah N., Ushakov D.S., Munoz-Ruiz M., Feederle R., Hayday A.C. Normality sensing licenses local T cells for innate-like tissue surveillance. Nat. Immunol., 2022, Vol. 23, no. 3, pp. 411-422.

143. McVay L.D., Carding S.R. Extrathymic origin of human gamma delta T cells during fetal development. J. Immunol., 1996, Vol. 157, no. 7, pp. 2873-2882.

144. McVay L.D., Carding S.R. Generation of human gammadelta T-cell repertoires. Crit. Rev. Immunol., 1999, Vol. 19, no. 5-6, pp. 431-460.

145. McVay L.D., Jaswal S.S., Kennedy C., Hayday A., Carding S.R. The generation of human gammadelta T cell repertoires during fetal development. J. Immunol., 1998, Vol. 160, no. 12, pp. 5851-5860.

146. Melandri D., Zlatareva I., Chaleil R.A.G., Dart R.J., Chancellor A., Nussbaumer O., Polyakova O., Roberts N.A., Wesch D., Kabelitz D., Irving P.M., John S., Mansour S., Bates P.A., Vantourout P., Hayday A.C. The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol., 2018, Vol. 19, no. 12, pp. 1352-1365.

147. Mensurado S., Blanco-Dominguez R., Silva-Santos B. The emerging roles of gammadelta T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol., 2023, Vol. 20, no. 3, pp. 178-191.

148. Mensurado S., Silva-Santos B. Battle of the gammadelta T cell subsets in the gut. Trends Cancer, 2022, Vol. 8, no. 11, pp. 881-883.

149. Meraviglia S., Lo Presti E., Tosolini M., La Mendola C., Orlando V., Todaro M., Catalano V., Stassi G., Cicero G., Vieni S., Fournie J.J., Dieli F. Distinctive features of tumor-infiltrating gammadelta T lymphocytes in human colorectal cancer. Oncoimmunology, 2017, Vol. 6, no. 10, e1347742. doi: 10.1080/2162402X.2017.1347742.

150. Merino D., Lalaoui N., Morizot A., Schneider P., Solary E., Micheau O. Differential inhibition of TRAILmediated DR5-DISC formation by decoy receptors 1 and 2. Mol. Cell. Biol., 2006, Vol. 26, no. 19, pp. 7046-7055.

151. Meuter S., Eberl M., Moser B. Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, no. 19, pp. 8730-8735.

152. Michel M.L., Pang D.J., Haque S.F., Potocnik A.J., Pennington D.J., Hayday A.C. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proc. Natl. Acad. Sci. USA, 2012, Vol. 109, no. 43, pp. 17549-17554.

153. Mikulak J., Oriolo F., Bruni E., Roberto A., Colombo F.S., Villa A., Bosticardo M., Bortolomai I., Lo Presti E., Meraviglia S., Dieli F., Vetrano S., Danese S., Della Bella S., Carvello M.M., Sacchi M., Cugini G., Colombo G., Klinger M., Spaggiari P., Roncalli M., Prinz I., Ravens S., di Lorenzo B., Marcenaro E., Silva-Santos B., Spinelli A., Mavilio D. NKp46-expressing human gut-resident intraepithelial Vdelta1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight, 2019, Vol. 4, no. 24, e125884. doi: 10.1172/jci.insight.125884.

154. Mo W.X., Yin S.S., Chen H., Zhou C., Zhou J.X., Zhao L.D., Fei Y.Y., Yang H.X., Guo J.B., Mao Y.J., Huang L.F., Zheng W.J., Zhang W., Zhang J.M., He W., Zhang X. Chemotaxis of Vdelta2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann. Rheum. Dis., 2017, Vol. 76, no. 12, pp. 2075-2084.

155. Moens E., Brouwer M., Dimova T., Goldman M., Willems F., Vermijlen D. IL-23R and TCR signaling drives the generation of neonatal Vgamma9Vdelta2 T cells expressing high levels of cytotoxic mediators and producing IFN-gamma and IL-17. J. Leukoc. Biol., 2011, Vol. 89, no. 5, pp. 743-752.

156. Montaldo E., Del Zotto G., Della Chiesa M., Mingari M.C., Moretta A., De Maria A., Moretta L. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A, 2013, Vol. 83, no. 8, pp. 702-713. doi: 10.1002/cyto.a.22302.

157. Mou W., Han W., Ma X., Wang X., Qin H., Zhao W., Ren X., Chen X., Yang W., Cheng H., Wang X., Zhang H., Ni X., Wang H., Gui J. gammadeltaTFH cells promote B cell maturation and antibody production in neuroblastoma. BMC Immunol., 2017, Vol. 18, no. 1, 36. doi: 10.1186/s12865-017-0216-x.

158. Munoz-Ruiz M., Ribot J.C., Grosso A.R., Goncalves-Sousa N., Pamplona A., Pennington D.J., Regueiro J.R., Fernandez-Malave E., Silva-Santos B. TCR signal strength controls thymic differentiation of discrete proinflammatory gammadelta T cell subsets. Nat. Immunol., 2016, Vol. 17, no. 6, pp. 721-727.

159. Munoz-Ruiz M., Sumaria N., Pennington D.J., Silva-Santos B. Thymic determinants of gammadelta T Cell differentiation. Trends Immunol., 2017, Vol. 38, no. 5, pp. 336-344.

160. Murray S.A., Mohar I., Miller J.L., Brempelis K.J., Vaughan A.M., Kappe S.H., Crispe I.N. CD40 is required for protective immunity against liver stage Plasmodium infection. J. Immunol., 2015, Vol. 194, no. 5, pp. 2268-2279.

161. Ness-Schwickerath K.J., Jin C., Morita C.T. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. J. Immunol., 2010, Vol. 184, no. 12, pp. 7268-7280.

162. Neumann S., Hasenauer J., Pollak N., Scheurich P. Dominant negative effects of tumor necrosis factor (TNF)- related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J. Biol. Chem., 2014, Vol. 289, no. 23, pp. 16576-16587.

163. Ni C., Fang Q.Q., Chen W.Z., Jiang J.X., Jiang Z., Ye J., Zhang T., Yang L., Meng F.B., Xia W.J., Zhong M., Huang J. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+gammadelta1 Treg cells. Signal Transduct. Target. Ther., 2020, Vol. 5, no. 1, 41. doi: 10.1038/s41392-020-0129-7.

164. Nielsen C.M., White M.J., Goodier M.R., Riley E.M. Functional significance of CD57 Expression on Human NK Cells and Relevance to Disease. Front. Immunol., 2013, Vol. 4, 422. doi: 10.3389/fimmu.2013.00422.

165. Nielsen M.M., Witherden D.A., Havran W.L. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol., 2017, Vol. 17, no. 12, pp. 733-745.

166. Ning Z., Liu K., Xiong H. Roles of BTLA in immunity and immune disorders. Front. Immunol., 2021, Vol. 12, 654960. doi: 10.3389/fimmu.2021.654960.

167. Nowak I., Wilczynska K., Wilczynski J.R., Malinowski A., Radwan P., Radwan M., Kusnierczyk P. KIR, LILRB and their ligands’ genes as potential biomarkers in recurrent implantation failure. Arch. Immunol. Ther. Exp., 2017, Vol. 65, no. 5, pp. 391-399.

168. Oberg H.H., Wesch D., Kalyan S., Kabelitz D. Regulatory interactions between neutrophils, tumor cells and T сells. Front. Immunol., 2019, Vol. 10, 1690. doi: 10.3389/fimmu.2019.01690.

169. Otano I., Azpilikueta A., Glez-Vaz J., Alvarez M., Medina-Echeverz J., Cortés-Domínguez I., Ortiz-deSolorzano C., Ellmark P., Fritzell S., Hernandez-Hoyos G., Nelson M.H., Ochoa M.C., Bolaños E., Cuculescu D., Jaúregui P., Sanchez-Gregorio S., Etxeberria I., Rodriguez-Ruiz M.E., Sanmamed M.F., Teijeira Á., Berraondo P., Melero I. CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat. Commun., 2021, Vol. 12, no. 1, 7296. doi: 10.1038/s41467-021-27613-w.

170. Ou L., Wang H., Huang H., Zhou Z., Lin Q., Guo Y., Mitchell T., Huang A.C., Karakousis G., Schuchter L., Amaravadi R., Guo W., Salvino J., Herlyn M., Xu X. Preclinical platforms to study therapeutic efficacy of human gammadelta T cells. Clin. Transl. Med., 2022, Vol. 12, no. 6, e814. doi: 10.1002/ctm2.814.

171. Palakodeti A., Sandstrom A., Sundaresan L., Harly C., Nedellec S., Olive D., Scotet E., Bonneville M., Adams E.J. The molecular basis for modulation of human Vgamma9Vdelta2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J. Biol. Chem., 2012, Vol. 287, no. 39, pp. 32780-32790.

172. Pan G., Ni J., Wei Y.F., Yu G., Gentz R., Dixit V.M. An antagonist decoy receptor and a death domaincontaining receptor for TRAIL. Science, 1997, Vol. 277, no. 5327, pp. 815-818.

173. Papotto P.H., Reinhardt A., Prinz I., Silva-Santos B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun., 2018, Vol. 87, pp. 26-37.

174. Papotto P.H., Ribot J.C., Silva-Santos B. IL-17(+) gammadelta T cells as kick-starters of inflammation. Nat. Immunol., 2017, Vol. 18, no. 6, pp. 604-611.

175. Park J.H., Lee H.K. Function of gammadelta T cells in tumor immunology and their application to cancer therapy. Exp. Mol. Med., 2021, Vol. 53, no. 3, pp. 318-327.

176. Patil R.S., Shah S.U., Shrikhande S.V., Goel M., Dikshit R.P., Chiplunkar S.V. IL17 producing gammadeltaT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer, 2016, Vol. 139, no. 4, pp. 869-881.

177. Patin E.C., Soulard D., Fleury S., Hassane M., Dombrowicz D., Faveeuw C., Trottein F., Paget C. Type I IFN Receptor Signaling Controls IL7-Dependent Accumulation and Activity of Protumoral IL17A-Producing gammadeltaT Cells in Breast Cancer. Cancer Res., 2018, Vol. 78, no. 1, pp. 195-204.

178. Paul S., Lal G. Regulatory and effector functions of gamma-delta (gammadelta) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int. J. Cancer, 2016, Vol. 139, no. 5, pp. 976-985.

179. Pellicci D.G., Koay H.F., Berzins S.P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and gammadelta T cells emerge. Nat. Rev. Immunol., 2020, Vol. 20, no. 12, pp. 756-770.

180. Peters C., Hasler R., Wesch D., Kabelitz D. Human Vdelta2 T cells are a major source of interleukin-9. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 44, pp. 12520-12525.

181. Peters C., Kabelitz D., Wesch D. Regulatory functions of gammadelta T cells. Cell. Mol. Life Sci., 2018, Vol. 75, no. 12, pp. 2125-2135.

182. Peters C., Oberg H.H., Kabelitz D., Wesch D. Phenotype and regulation of immunosuppressive Vdelta2-expressing gammadelta T cells. Cell. Mol. Life Sci., 2014, Vol. 71, no. 10, pp. 1943-1960.

183. Poggi A., Carosio R., Fenoglio D., Brenci S., Murdaca G., Setti M., Indiveri F., Scabini S., Ferrero E., Zocchi M.R. Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood, 2004, Vol. 103, no. 6, pp. 2205-2213.

184. Poggi A., Contini P., Catellani S., Setti M., Murdaca G., Zocchi M.R. Regulation of gammadelta T cell survival by soluble HLA-I: involvement of CD8 and activating killer Ig-like receptors. Eur. J. Immunol., 2005, Vol. 35, no. 9, pp. 2670-2678.

185. Polgar B., Barakonyi A., Xynos I., Szekeres-Bartho J. The role of gamma/delta T cell receptor positive cells in pregnancy. Am. J. Reprod. Immunol., 1999, Vol. 41, no. 4, pp. 239-244.

186. Poupot M., Pont F., Fournie J.J. Profiling blood lymphocyte interactions with cancer cells uncovers the innate reactivity of human gamma delta T cells to anaplastic large cell lymphoma. J. Immunol., 2005, Vol. 174, no. 3, pp. 1717-1722.

187. Qu G., Wang S., Zhou Z., Jiang D., Liao A., Luo J. Comparing mouse and human tissue-resident gammadelta T Cells. Front. Immunol., 2022, Vol. 13, 891687. doi: 10.3389/fimmu.2022.891687.

188. Raulet D.H., Gasser S., Gowen B.G., Deng W., Jung H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol., 2013, Vol. 31, pp. 413-441.

189. Ravens S., Hengst J., Schlapphoff V., Deterding K., Dhingra A., Schultze-Florey C., Koenecke C., Cornberg M., Wedemeyer H., Prinz I. Human gammadelta T cell receptor repertoires in peripheral blood remain stable despite clearance of persistent hepatitis C virus infection by direct-acting antiviral drug therapy. Front. Immunol., 2018, Vol. 9, 510. doi: 10.3389/fimmu.2018.00510.

190. Ravens S., Schultze-Florey C., Raha S., Sandrock I., Drenker M., Oberdorfer L., Reinhardt A., Ravens I., Beck M., Geffers R., von Kaisenberg C., Heuser M., Thol F., Ganser A., Forster R., Koenecke C., Prinz I. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol., 2017, Vol. 18, no. 4, pp. 393-401.

191. Rei M., Goncalves-Sousa N., Lanca T., Thompson R.G., Mensurado S., Balkwill F.R., Kulbe H., Pennington D.J., Silva-Santos B. Murine CD27(-) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl. Acad. Sci. USA, 2014, Vol. 111, no. 34, pp. E3562-E3570.

192. Reis B.S., Darcy P.W., Khan I.Z., Moon C.S., Kornberg A.E., Schneider V.S., Alvarez Y., Eleso O., Zhu C., Schernthanner M., Lockhart A., Reed A., Bortolatto J., Castro T.B.R., Bilate A.M., Grivennikov S., Han A.S., Mucida D. TCR-Vgammadelta usage distinguishes protumor from antitumor intestinal gammadelta T cell subsets. Science, 2022, Vol. 377, no. 6603, pp. 276-284.

193. Ren S., Zhang X., Guan H., Wu L., Yu M., Hou D., Yan Y., Fang X. Lactobacillus acidipiscis induced regulatory gamma Delta T cells and attenuated experimental autoimmune encephalomyelitis. Front. Immunol., 2021, Vol. 12, 623451. doi: 10.3389/fimmu.2021.623451.

194. Ribot J.C., deBarros A., Pang D.J., Neves J.F., Peperzak V., Roberts S.J., Girardi M., Borst J., Hayday A.C., Pennington D.J., Silva-Santos B. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol., 2009, Vol. 10, no. 4, pp. 427-436.

195. Ribot J.C., deBarros A., Silva-Santos B. Searching for «signal 2»: costimulation requirements of gammadelta T cells. Cell. Mol. Life Sci., 2011, Vol. 68, no. 14, pp. 2345-2355.

196. Ribot J.C., Lopes N., Silva-Santos B. gammadelta T cells in tissue physiology and surveillance. Nat. Rev. Immunol., 2021, Vol. 21, no. 4, pp. 221-232.

197. Ribot J.C., Ribeiro S.T., Correia D.V., Sousa A.E., Silva-Santos B. Human gammadelta thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol., 2014, Vol. 192, no. 5, pp. 2237-2243.

198. Rice M.T., von Borstel A., Chevour P., Awad W., Howson L.J., Littler D.R., Gherardin N.A., Le Nours J., Giles E.M., Berry R., Godfrey D.I., Davey M.S., Rossjohn J., Gully B.S. Recognition of the antigen-presenting molecule MR1 by a Vdelta3(+) gammadelta T cell receptor. Proc. Natl. Acad. Sci. USA, 2021, Vol. 118, no. 49, e2110288118. doi: 10.1073/pnas.2110288118.

199. Ridgley L.A., Caron J., Dalgleish A., Bodman-Smith M. Releasing the restraints of Vgamma9Vdelta2 T-cells in cancer immunotherapy. Front. Immunol., 2022, Vol. 13, 1065495. doi: 10.3389/fimmu.2022.1065495.

200. Rigau M., Ostrouska S., Fulford T.S., Johnson D.N., Woods K., Ruan Z., McWilliam H.E.G., Hudson C., Tutuka C., Wheatley A.K., Kent S.J., Villadangos J.A., Pal B., Kurts C., Simmonds J., Pelzing M., Nash A.D., Hammet A., Verhagen A.M., Vairo G., Maraskovsky E., Panousis C., Gherardin N.A., Cebon J., Godfrey D.I., Behren A., Uldrich A.P. Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. Science, 2020, Vol. 367, no. 6478, eaay5516. doi: 10.1126/science.aay5516.

201. Riol-Blanco L., Lazarevic V., Awasthi A., Mitsdoerffer M., Wilson B.S., Croxford A., Waisman A., Kuchroo V.K., Glimcher L.H., Oukka M. IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. J. Immunol., 2010, Vol. 184, no. 4, pp. 1710-1720.

202. Robak E., Niewiadomska H., Robak T., Bartkowiak J., Blonski J.Z., Wozniacka A., Pomorski L., Sysa-Jedrezejowska A. Lymphocyctes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediators Inflamm., 2001, Vol. 10, no. 4, pp. 179-189.

203. Rodin W., Szeponik L., Rangelova T., Tamiru Kebede F., Osterlund T., Sundstrom P., Hogg S., Wettergren Y., Cosma A., Stahlberg A., Bexe Lindskog E., Quiding Jarbrink M. gammadelta T cells in human colon adenocarcinomas comprise mainly Vdelta1, Vdelta2, and Vdelta3 cells with distinct phenotype and function. Cancer Immunol. Immunother., 2024, Vol. 73, no. 9, 174. doi: 10.1007/s00262-024-03758-7.

204. Rothenberg E.V. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp. Hematol., 2021, Vol. 95, pp. 1-12.

205. Roura-Mir C., Catalfamo M., Cheng T.Y., Marqusee E., Besra G.S., Jaraquemada D., Moody D.B. CD1a and CD1c activate intrathyroidal T cells during Graves’ disease and Hashimoto’s thyroiditis. J. Immunol., 2005, Vol. 174, no. 6, pp. 3773-3780.

206. Roy S., Ly D., Castro C.D., Li N.S., Hawk A.J., Altman J.D., Meredith S.C., Piccirilli J.A., Moody D.B., Adams E.J. Molecular Analysis of Lipid-Reactive Vdelta1 gammadelta T Cells Identified by CD1c Tetramers. J. Immunol., 2016, Vol. 196, no. 4, pp. 1933-1942.

207. Rust C.J., Verreck F., Vietor H., Koning F. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the V gamma 9 region. Nature, 1990, Vol. 346, no. 6284, pp. 572-574.

208. Ryan P.L., Sumaria N., Holland C.J., Bradford C.M., Izotova N., Grandjean C.L., Jawad A.S., Bergmeier L.A., Pennington D.J. Heterogeneous yet stable Vdelta2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 50, pp. 14378-14383.

209. Sanchez-Correa B., Valhondo I., Hassouneh F., Lopez-Sejas N., Pera A., Bergua J.M., Arcos M.J., Banas H., Casas-Aviles I., Duran E., Alonso C., Solana R., Tarazona R. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers, 2019, Vol. 11, no. 6, 877. doi: 10.3390/cancers11060877.

210. Sandstrom A., Peigne C.M., Leger A., Crooks J.E., Konczak F., Gesnel M.C., Breathnach R., Bonneville M., Scotet E., Adams E.J. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity, 2014, Vol. 40, no. 4, pp. 490-500.

211. Schönefeldt S., Wais T., Herling M., Mustjoki S., Bekiaris V., Moriggl R., Neubauer H.A. The diverse roles of gammadelta T cells in cancer: from rapid immunity to aggressive lymphoma. Cancers, 2021, Vol. 13, no. 24, 6212. doi: 10.3390/cancers13246212.

212. Sebestyen Z., Prinz I., Dechanet-Merville J., Silva-Santos B., Kuball J. Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov., 2020, Vol. 19, no. 3, pp. 169-184.

213. Seifert A.M., List J., Heiduk M., Decker R., von Renesse J., Meinecke A.C., Aust D.E., Welsch T., Weitz J., Seifert L. Gamma-delta T cells stimulate IL-6 production by pancreatic stellate cells in pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol., 2020, Vol. 146, no. 12, pp. 3233-3240.

214. Shah D.K., Zuniga-Pflucker J.C. An overview of the intrathymic intricacies of T cell development. J. Immunol., 2014, Vol. 192, no. 9, pp. 4017-4023.

215. Shibata K., Yamada H., Hara H., Kishihara K., Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol., 2007, Vol. 178, no. 7, pp. 4466-4472.

216. Si F., Liu X., Tao Y., Zhang Y., Ma F., Hsueh E.C., Puram S.V., Peng G. Blocking senescence and tolerogenic function of dendritic cells induced by gammadelta Treg cells enhances tumor-specific immunity for cancer immunotherapy. J. Immunother. Cancer, 2024, Vol. 12, no. 4, e008219. doi: 10.1136/jitc-2023-008219.

217. Siblany L., Stocker N., Ricard L., Brissot E., Dulery R., Banet A., Sestili S., Belhocine R., Van de Wyngaert Z., Bonnin A., Capes A., Ledraa T., Beurier P., Fadel K., Mohty M., Gaugler B., Malard F. Unconventional T Cells influence clinical outcome after allogeneic hematopoietic cell transplantation. J. Clin. Immunol., 2024, Vol. 44, no. 6, 139. doi: 10.1007/s10875-024-01741-6.

218. Silva-Santos B. Promoting angiogenesis within the tumor microenvironment: the secret life of murine lymphoid IL-17-producing gammadelta T cells. Eur. J. Immunol., 2010, Vol. 40, no. 7, pp. 1873-1876.

219. Silva-Santos B., Mensurado S., Coffelt S.B. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer, 2019, Vol. 19, no. 7, pp. 392-404.

220. Silva-Santos B., Schamel W.W., Fisch P., Eberl M. gammadelta T-cell conference 2012: close encounters for the fifth time. Eur. J. Immunol., 2012, Vol. 42, no. 12, pp. 3101-3105.

221. Silva-Santos B., Serre K., Norell H. gammadelta T cells in cancer. Nat. Rev. Immunol., 2015, Vol. 15, no. 11, pp. 683-691.

222. Simoes A.E., Di Lorenzo B., Silva-Santos B. Molecular determinants of target cell recognition by human gammadelta T Cells. Front. Immunol., 2018, Vol. 9, 929. doi: 10.3389/fimmu.2018.00929.

223. Simon S., Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology, 2017, Vol. 7, no. 1, e1364828. doi: 10.1080/2162402X.2017.1364828.

224. Spada F.M., Grant E.P., Peters P.J., Sugita M., Melian A., Leslie D.S., Lee H.K., van Donselaar E., Hanson D.A., Krensky A.M., Majdic O., Porcelli S.A., Morita C.T., Brenner M.B. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J. Exp. Med., 2000, Vol. 191, no. 6, pp. 937-948.

225. Spits H., Paliard X., Engelhard V.H., de Vries J.E. Cytotoxic activity and lymphokine production of T cell receptor (TCR)-alpha beta+ and TCR-gamma delta+ cytotoxic T lymphocyte (CTL) clones recognizing HLA-A2 and HLA-A2 mutants. Recognition of TCR-gamma delta+ CTL clones is affected by mutations at positions 152 and 156. J. Immunol., 1990, Vol. 144, no. 11, pp. 4156-4162.

226. Suen T.K., Moorlag S., Li W., de Bree L.C.J., Koeken V., Mourits V.P., Dijkstra H., Lemmers H., Bhat J., Xu C.J., Joosten L.A.B., Schultze J.L., Li Y., Placek K., Netea M.G. BCG vaccination induces innate immune memory in gammadelta T cells in humans. J. Leukoc. Biol., 2024, Vol. 115, no. 1, pp. 149-163.

227. Suliman S., Geldenhuys H., Johnson J.L., Hughes J.E., Smit E., Murphy M., Toefy A., Lerumo L., Hopley C., Pienaar B., Chheng P., Nemes E., Hoft D.F., Hanekom W.A., Boom W.H., Hatherill M., Scriba T.J. Bacillus Calmette-Guerin (BCG) revaccination of adults with latent mycobacterium tuberculosis infection induces long-lived BCG-Reactive NK Cell Responses. J. Immunol., 2016, Vol. 197, no. 4, pp. 1100-1110.

228. Sumaria N., Grandjean C.L., Silva-Santos B., Pennington D.J. Strong TCRgammadelta signaling prohibits thymic development of IL-17A-secreting gammadelta T cells. Cell Rep., 2017, Vol. 19, no. 12, pp. 2469-2476.

229. Sun H., Sun C., Xiao W. Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine, 2014, Vol. 65, no. 1, pp. 33-41.

230. Sutton C.E., Lalor S.J., Sweeney C.M., Brereton C.F., Lavelle E.C., Mills K.H. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity, 2009, Vol. 31, no. 2, pp. 331-341.

231. Talukdar A., Rai R., Aparna Sharma K., Rao D.N., Sharma A. Peripheral Gamma Delta T cells secrete inflammatory cytokines in women with idiopathic recurrent pregnancy loss. Cytokine, 2018, Vol. 102, pp. 117-122.

232. Tan G., Spillane K.M., Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. Biology, 2023, Vol. 12, no. 8, 1079. doi: 10.3390/biology12081079.

233. Taupin J.L., Halary F., Dechanet J., Peyrat M.A., Ragnaud J.M., Bonneville M., Moreau J.F. An enlarged subpopulation of T lymphocytes bearing two distinct gammadelta TCR in an HIV-positive patient. Int. Immunol., 1999, Vol. 11, no. 4, pp. 545-552.

234. Terzieva A., Dimitrova V., Djerov L., Dimitrova P., Zapryanova S., Hristova I., Vangelov I., Dimova T. Early Pregnancy human decidua is enriched with activated, fully differentiated and pro-inflammatory gamma/delta T cells with diverse TCR repertoires. Int. J. Mol. Sci., 2019, Vol. 20, no. 3, 687. doi: 10.3390/ijms20030687.

235. Tieppo P., Papadopoulou M., Gatti D., McGovern N., Chan J.K.Y., Gosselin F., Goetgeluk G., Weening K., Ma L., Dauby N., Cogan A., Donner C., Ginhoux F., Vandekerckhove B., Vermijlen D. The human fetal thymus generates invariant effector gammadelta T cells. J. Exp. Med., 2020, Vol. 217, no. 3, jem.20190580. doi: 10.1084/jem.20190580.

236. Tilloy F., Treiner E., Park S.H., Garcia C., Lemonnier F., de la Salle H., Bendelac A., Bonneville M., Lantz O. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med., 1999, Vol. 189, no. 12, pp. 1907-1921.

237. Tomogane M., Sano Y., Shimizu D., Shimizu T., Miyashita M., Toda Y., Hosogi S., Tanaka Y., Kimura S., Ashihara E. Human Vgamma9Vdelta2 T cells exert anti-tumor activity independently of PD-L1 expression in tumor cells. Biochem. Biophys. Res. Commun., 2021, Vol. 573, pp. 132-139.

238. Toulon A., Breton L., Taylor K.R., Tenenhaus M., Bhavsar D., Lanigan C., Rudolph R., Jameson J., Havran W.L. A role for human skin-resident T cells in wound healing. J. Exp. Med., 2009, Vol. 206, no. 4, pp. 743-750.

239. Toutirais O., Cabillic F., Le Friec G., Salot S., Loyer P., Le Gallo M., Desille M., de La Pintiere C.T., Daniel P., Bouet F., Catros V. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vgamma9Vdelta2 T cells. Eur. J. Immunol., 2009, Vol. 39, no. 5, pp. 1361-1368.

240. Towstyka N.Y., Shiromizu C.M., Keitelman I., Sabbione F., Salamone G.V., Geffner J.R., Trevani A.S., Jancic C.C. Modulation of gammadelta T-cell activation by neutrophil elastase. Immunology, 2018, Vol. 153, no. 2, pp. 225-237.

241. Treiner E., Duban L., Bahram S., Radosavljevic M., Wanner V., Tilloy F., Affaticati P., Gilfillan S., Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature, 2003, Vol. 422, no. 6928, pp. 164-169.

242. Trowsdale J., Moffett A. NK receptor interactions with MHC class I molecules in pregnancy. Semin. Immunol., 2008, Vol. 20, no. 6, pp. 317-320.

243. Tsai C.Y., Liong K.H., Gunalan M.G., Li N., Lim D.S., Fisher D.A., MacAry P.A., Leo Y.S., Wong S.C., Puan K.J., Wong S.B. Type I IFNs and IL-18 regulate the antiviral response of primary human gammadelta T cells against dendritic cells infected with Dengue virus. J. Immunol., 2015, Vol. 194, no. 8, pp. 3890-3900.

244. Tuengel J., Ranchal S., Maslova A., Aulakh G., Papadopoulou M., Drissler S., Cai B., Mohsenzadeh-Green C., Soudeyns H., Mostafavi S., van den Elzen P., Vermijlen D., Cook L., Gantt S. Characterization of adaptive-like gammadelta T cells in ugandan infants during primary cytomegalovirus infection. Viruses, 2021, Vol. 13, no. 10, 1987. doi: 10.3390/v13101987.

245. Tyler C.J., Doherty D.G., Moser B., Eberl M. Human Vgamma9/Vdelta2 T cells: Innate adaptors of the immune system. Cell. Immunol., 2015, Vol. 296, no. 1, pp. 10-21.

246. Tyler C.J., McCarthy N.E., Lindsay J.O., Stagg A.J., Moser B., Eberl M. Antigen-presenting human gammadelta T cells promote intestinal CD4(+) T cell expression of IL-22 and mucosal release of calprotectin. J. Immunol., 2017, Vol. 198, no. 9, pp. 3417-3425.

247. Tyshchuk E.V., Mikhailova V.A., Selkov S.A., Sokolov D.I. Natural killer cells: origin, phenotype, function. Medical Immunology (Russia), 2021, Vol. 23, no. 6, pp. 1207-1228. doi: 10.15789/1563-0625-nkc-2330.

248. Uehara S., Song K., Farber J.M., Love P.E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3(high)CD69+ thymocytes and gammadeltaTCR+ thymocytes preferentially respond to CCL25. J. Immunol., 2002, Vol. 168, no. 1, pp. 134-142.

249. Ullrich R., Schieferdecker H.L., Ziegler K., Riecken E.O., Zeitz M. gamma delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell. Immunol., 1990, Vol. 128, no. 2, pp. 619-627.

250. van Coppernolle S., Vanhee S., Verstichel G., Snauwaert S., van der Spek A., Velghe I., Sinnesael M., Heemskerk M.H., Taghon T., Leclercq G., Plum J., Langerak A.W., Kerre T., Vandekerckhove B. Notch induces human T-cell receptor gammadelta+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway. Leukemia, 2012, Vol. 26, no. 1, pp. 127-138.

251. van de Walle I., De Smet G., De Smedt M., Vandekerckhove B., Leclercq G., Plum J., Taghon T. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCRgammadelta T cells. Blood, 2009, Vol. 113, no. 13, pp. 2988-2998.

252. van Rhijn I., Godfrey D.I., Rossjohn J., Moody D.B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol., 2015, Vol. 15, no. 10, pp. 643-654.

253. von Karstedt S., Montinaro A., Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat. Rev. Cancer, 2017, Vol. 17, no. 6, pp. 352-366.

254. von Lilienfeld-Toal M., Nattermann J., Feldmann G., Sievers E., Frank S., Strehl J., Schmidt-Wolf I.G. Activated gammadelta T cells express the natural cytotoxicity receptor natural killer p 44 and show cytotoxic activity against myeloma cells. Clin. Exp. Immunol., 2006, Vol. 144, no. 3, pp. 528-533.

255. Walczak H., Degli-Esposti M.A., Johnson R.S., Smolak P.J., Waugh J.Y., Boiani N., Timour M.S., Gerhart M.J., Schooley K.A., Smith C.A., Goodwin R.G., Rauch C.T. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J., 1997, Vol. 16, no. 17, pp. 5386-5397.

256. Wang C., Lai A.Y., Baiu D.C., Smith K.A., Odorico J.S., Wilson K., Schreiber T., de Silva S., Gumperz J.E. Analysis of butyrophilin-mediated activation of gammadelta T cells from human spleen. J. Immunol., 2024, Vol. 212, no. 2, pp. 284-294.

257. Wang L., Xu M., Wang C., Zhu L., Hu J., Chen S., Wu X., Li B., Li Y. The feature of distribution and clonality of TCR gamma/delta subfamilies T cells in patients with B-cell non-Hodgkin lymphoma. J. Immunol. Res., 2014, Vol. 2014, 241246. doi: 10.1155/2014/241246.

258. Wegrecki M., Ocampo T.A., Gunasinghe S.D., von Borstel A., Tin S.Y., Reijneveld J.F., Cao T.P., Gully B.S., Le Nours J., Moody D.B., Van Rhijn I., Rossjohn J. Atypical sideways recognition of CD1a by autoreactive gammadelta T cell receptors. Nat. Commun., 2022, Vol. 13, no. 1, 3872. doi: 10.1038/s41467-022-31443-9.

259. Wen L., Hayday A.C. Gamma delta T-cell help in responses to pathogens and in the development of systemic autoimmunity. Immunol. Res., 1997, Vol. 16, no. 3, pp. 229-241. doi: 10.1007/BF02786392.

260. Wesch D., Glatzel A., Kabelitz D. Differentiation of resting human peripheral blood gamma delta T cells toward Th1- or Th2-phenotype. Cell. Immunol., 2001, Vol. 212, no. 2, pp. 110-117.

261. Wesch D., Hinz T., Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int. Immunol., 1998, Vol. 10, no. 8, pp. 1067-1075.

262. Wesch D., Kabelitz D., Oberg H.H. Tumor resistance mechanisms and their consequences on gammadelta T cell activation. Immunol. Rev., 2020, Vol. 298, no. 1, pp. 84-98.

263. Wesch D., Peters C., Oberg H.H., Pietschmann K., Kabelitz D. Modulation of gammadelta T cell responses by TLR ligands. Cell. Mol. Life Sci., 2011, Vol. 68, no. 14, pp. 2357-2370.

264. Willcox B.E., Willcox C.R. gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol., 2019, Vol. 20, no. 2, pp. 121-128.

265. Willcox C.R., Davey M.S., Willcox B.E. Development and selection of the human Vgamma9Vdelta2(+) T-Cell Repertoire. Front. Immunol., 2018, Vol. 9, 1501. doi: 10.3389/fimmu.2018.01501.

266. Willcox C.R., Mohammed F., Willcox B.E. The distinct MHC-unrestricted immunobiology of innate-like and adaptive-like human gammadelta T cell subsets-Nature’s CAR-T cells. Immunol. Rev., 2020, Vol. 298, no. 1, pp. 25-46.

267. Willcox C.R., Pitard V., Netzer S., Couzi L., Salim M., Silberzahn T., Moreau J.F., Hayday A.C., Willcox B.E., Dechanet-Merville J. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat. Immunol., 2012, Vol. 13, no. 9, pp. 872-879.

268. Willcox C.R., Vantourout P., Salim M., Zlatareva I., Melandri D., Zanardo L., George R., Kjaer S., Jeeves M., Mohammed F., Hayday A.C., Willcox B.E. Butyrophilin-like 3 directly binds a human Vgamma4(+) T cell receptor using a modality distinct from clonally-restricted antigen. Immunity, 2019, Vol. 51, no. 5, pp. 813-825.e4.

269. Wistuba-Hamprecht K., Martens A., Haehnel K., Geukes Foppen M., Yuan J., Postow M.A., Wong P., Romano E., Khammari A., Dreno B., Capone M., Ascierto P.A., Demuth I., Steinhagen-Thiessen E., Larbi A., Schilling B., Schadendorf D., Wolchok J.D., Blank C.U., Pawelec G., Garbe C., Weide B. Proportions of blood-borne Vdelta1+ and Vdelta2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur. J. Cancer, 2016, Vol. 64, pp. 116-126.

270. Woo S.R., Corrales L., Gajewski T.F. Innate immune recognition of cancer. Annu. Rev. Immunol., 2015, Vol. 33, no. 1, pp. 445-474.

271. Wu C., Cao X., Zhang X. VISTA inhibitors in cancer immunotherapy: a short perspective on recent progresses. RSC Med. Chem., 2021, Vol. 12, no. 10, pp. 1672-1679.

272. Wu J., Groh V., Spies T. T cell antigen receptor engagement and specificity in the recognition of stressinducible MHC class I-related chains by human epithelial gamma delta T cells. J. Immunol., 2002, Vol. 169, no. 3, pp. 1236-1240.

273. Wu K., Feng J., Xiu Y., Li Z., Lin Z., Zhao H., Zeng H., Xia W., Yu L., Xu B. Vdelta2 T cell subsets, defined by PD-1 and TIM-3 expression, present varied cytokine responses in acute myeloid leukemia patients. Int. Immunopharmacol., 2020, Vol. 80, 106122. doi: 10.1016/j.intimp.2019.106122.

274. Wu P., Wu D., Ni C., Ye J., Chen W., Hu G., Wang Z., Wang C., Zhang Z., Xia W., Chen Z., Wang K., Zhang T., Xu J., Han Y., Zhang T., Wu X., Wang J., Gong W., Zheng S., Qiu F., Yan J., Huang J. gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, 2014, Vol. 40, no. 5, pp. 785-800.

275. Wu X., Yang T., Liu X., Guo J.N., Xie T., Ding Y., Lin M., Yang H. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol., 2016, Vol. 37, no. 4, pp. 5493-5501.

276. Wu Y., Wu W., Wong W.M., Ward E., Thrasher A.J., Goldblatt D., Osman M., Digard P., Canaday D.H., Gustafsson K. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J. Immunol., 2009, Vol. 183, no. 9, pp. 5622-5629.

277. Wun K.S., Reijneveld J.F., Cheng T.Y., Ladell K., Uldrich A.P., le Nours J., Miners K.L., McLaren J.E., Grant E.J., Haigh O.L., Watkins T.S., Suliman S., Iwany S., Jimenez J., Calderon R., Tamara K.L., Leon S.R., Murray M.B., Mayfield J.A., Altman J.D., Purcell A.W., Miles J.J., Godfrey D.I., Gras S., Price D.A., Van Rhijn I., Moody D.B., Rossjohn J. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat. Immunol., 2018, Vol. 19, no. 4, pp. 397-406.

278. Xi X., Han X., Li L., Zhao Z. Identification of a new tuberculosis antigen recognized by gammadelta T cell receptor. Clin. Vaccine Immunol., 2013, Vol. 20, no. 4, pp. 530-539.

279. Xi X., Zhang X., Wang B., Wang J., Huang H., Cui L., Han X., Li L., He W., Zhao Z. A novel strategy to screen Bacillus Calmette-Guerin protein antigen recognized by gammadelta TCR. PLoS One, 2011, Vol. 6, no. 4, e18809. doi: 10.1371/journal.pone.0018809.

280. Xiao H., Lin R., Chen C., Lian R., Wu Y., Diao L., Yin T., Huang C. gammadelta-T cell with high toxic potential was associated with recurrent miscarriage. Am. J. Reprod. Immunol., 2023, Vol. 90, no. 1, e13717. doi: 10.1111/aji.13717.

281. Xu R., Jacques L.C., Khandaker S., Beentjes D., Leon-Rios M., Wei X., French N., Neill D.R., Kadioglu A. TNFR2(+) regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17Aproducing gammadelta T cells in the lung. Cell Rep., 2023, Vol. 42, no. 2, 112054. doi: 10.1016/j.celrep.2023.112054.

282. Xu W., Lau Z.W.X., Fulop T., Larbi A. The Aging of gammadelta T Cells. Cells, 2020, Vol. 9, no. 5, 1181. doi: 10.3390/cells9051181.

283. Xu Y., Xiang Z., Alnaggar M., Kouakanou L., Li J., He J., Yang J., Hu Y., Chen Y., Lin L., Hao J., Li J., Chen J., Li M., Wu Q., Peters C., Zhou Q., Li J., Liang Y., Wang X., Han B., Ma M., Kabelitz D., Xu K., Tu W., Wu Y., Yin Z. Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell. Mol. Immunol., 2021, Vol. 18, no. 2, pp. 427-439.

284. Yan J., Allen S., McDonald E., Das I., Mak J.Y.W., Liu L., Fairlie D.P., Meehan B.S., Chen Z., Corbett A.J., Varelias A., Smyth M.J., Teng M.W.L. MAIT cells promote tumor initiation, growth, and metastases via tumor MR1. Cancer Discov., 2020, Vol. 10, no. 1, pp. 124-141.

285. Yang Q., Liu X., Liu Q., Guan Z., Luo J., Cao G., Cai R., Li Z., Xu Y., Wu Z., Xu M., Zhang S., Zhang F., Yang H., Lin X., Yang M., Wu Y., Gao Y., Flavell R., Hao J., Yin Z. Roles of mTORC1 and mTORC2 in controlling gammadelta T1 and gammadelta T17 differentiation and function. Cell Death Differ., 2020, Vol. 27, no. 7, pp. 2248-2262.

286. Yang X., Zhan N., Jin Y., Ling H., Xiao C., Xie Z., Zhong H., Yu X., Tang R., Ma J., Guan J., Yin G., Wu G., Lu L., Wang J. Tofacitinib restores the balance of gammadeltaTreg/gammadeltaT17 cells in rheumatoid arthritis by inhibiting the NLRP3 inflammasome. Theranostics, 2021, Vol. 11, no. 3, pp. 1446-1457.

287. Yao Y.E., Qin C.C., Yang C.M., Huang T.X. gammadeltaT17/gammadeltaTreg cell subsets: a new paradigm for asthma treatment. J. Asthma, 2022, Vol. 59, no. 10, pp. 2028-2038.

288. Ye J., Ma C., Hsueh E.C., Eickhoff C.S., Zhang Y., Varvares M.A., Hoft D.F., Peng G. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol., 2013, Vol. 190, no. 5, pp. 2403-2414.

289. Ye J., Ma C., Wang F., Hsueh E.C., Toth K., Huang Y., Mo W., Liu S., Han B., Varvares M.A., Hoft D.F., Peng G. Specific recruitment of gammadelta regulatory T cells in human breast cancer. Cancer Res., 2013, Vol. 73, no. 20, pp. 6137-6148.

290. Yi Y., He H.W., Wang J.X., Cai X.Y., Li Y.W., Zhou J., Cheng Y.F., Jin J.J., Fan J., Qiu S.J. The functional impairment of HCC-infiltrating gammadelta T cells, partially mediated by regulatory T cells in a TGFbeta- and IL-10-dependent manner. J. Hepatol., 2013, Vol. 58, no. 5, pp. 977-983.

291. Young J.L., Goodall J.C., Beacock-Sharp H., Gaston J.S. Human gamma delta T-cell recognition of Yersinia enterocolitica. Immunology, 1997, Vol. 91, no. 4, pp. 503-510.

292. Yuan S., Wang C., Zeng Y., Li J., Li W., He Z., Ye J., Li F., Chen Y., Lin X., Xu Y., Yu N., Cai X. Aberrant phenotypes of circulating gammadelta-T cells may be involved in the onset of systemic lupus erythematosus. Lupus, 2024, Vol. 33, no. 6, pp. 587-597.

293. Zakeri N., Hall A., Swadling L., Pallett L.J., Schmidt N.M., Diniz M.O., Kucykowicz S., Amin O.E., Gander A., Pinzani M., Davidson B.R., Quaglia A., Maini M.K. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat. Commun., 2022, Vol. 13, no. 1, 1372. doi: 10.1038/s41467-022-29012-1.

294. Zarin P., Wong G.W., Mohtashami M., Wiest D.L., Zuniga-Pflucker J.C. Enforcement of gammadeltalineage commitment by the pre-T-cell receptor in precursors with weak gammadelta-TCR signals. Proc. Natl. Acad. Sci. USA, 2014, Vol. 111, no. 15, pp. 5658-5663.

295. Zhang M., Ge T., Zhang Y., La X. Identification of MARK2, CCDC71, GATA2, and KLRC3 as candidate diagnostic genes and potential therapeutic targets for repeated implantation failure with antiphospholipid syndrome by integrated bioinformatics analysis and machine learning. Front. Immunol., 2023, Vol. 14, 1126103. doi: 10.3389/fimmu.2023.1126103.

296. Zhang Y., Cado D., Asarnow D.M., Komori T., Alt F.W., Raulet D.H., Allison J.P. The role of short homology repeats and TdT in generation of the invariant gamma delta antigen receptor repertoire in the fetal thymus. Immunity, 1995, Vol. 3, no. 4, pp. 439-447.

297. Zhang Z., Yang C., Li L., Zhu Y., Su K., Zhai L., Wang Z., Huang J. «gammadeltaT Cell-IL17A-neutrophil» axis drives immunosuppression and confers breast cancer resistance to high-dose Anti-VEGFR2 Therapy. Front. Immunol., 2021, Vol. 12, 699478. doi: 10.3389/fimmu.2021.699478.

298. Zhao Y., Niu C., Cui J. Gamma-delta (gammadelta) T cells: friend or foe in cancer development? J. Transl. Med., 2018, Vol. 16, no. 1, 3. doi: 10.1186/s12967-017-1378-2.

299. Zhou J., Kang N., Cui L., Ba D., He W. Anti-gammadelta TCR antibody-expanded gammadelta T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell. Mol. Immunol., 2012, Vol. 9, no. 1, pp. 34-44.

300. Zhu X., Sakamoto S., Ishii C., Smith M.D., Ito K., Obayashi M., Unger L., Hasegawa Y., Kurokawa S., Kishimoto T., Li H., Hatano S., Wang T.H., Yoshikai Y., Kano S.I., Fukuda S., Sanada K., Calabresi P.A., Kamiya A. Dectin-1 signaling on colonic gammadelta T cells promotes psychosocial stress responses. Nat. Immunol., 2023, Vol. 24, no. 4, pp. 625-636.

301. Zingoni A., Molfetta R., Fionda C., Soriani A., Paolini R., Cippitelli M., Cerboni C., Santoni A. NKG2D and Its Ligands: “One for All, All for One”. Front. Immunol., 2018, Vol. 9, 476. doi: 10.3389/fimmu.2018.00476.


Дополнительные файлы

Рецензия

Для цитирования:


Соколов Д.И. Гамма-дельта (γδ) T-клетки: происхождение, фенотип, функции. Медицинская иммунология. 2025;27(5):899-934. https://doi.org/10.15789/1563-0625-GDT-3160

For citation:


Sokolov D.I. Gamma delta (γδ) T cells: origin, phenotype, functions. Medical Immunology (Russia). 2025;27(5):899-934. (In Russ.) https://doi.org/10.15789/1563-0625-GDT-3160

Просмотров: 424


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)