FEATURES OF THE IMMUNE RESPONSE TO XENOGENIC TISSUES OF VALVES AND PATCHES OF THE HEART (literature review)
https://doi.org/10.15789/1563-0625-FOT-3159
Abstract
Abstract
A global study shows that valvular heart disease still occupies one of the leading places in the structure of mortality from cardiovascular diseases, being one of the leading causes of heart failure, including among the working population. Xenogeneic tissues are widely used in cardiac surgery, both in biological prosthetic heart valves and in vascular and intracardiac patches. Modern methods of chemical treatment of xenogenic tissue aimed at the eliminating of its immunogenicity do not completely remove xenoantigens from the tissue. It is suggested that residual animals’ carbohydrate antigens are a trigger of immune response to xenotissues. At the same time, the role of the immune response to xenogeneic antigens in the induction of inflammation, valve dysfunction, and calcification are discussed.
The aim of this review was to summarize scientific research data on the immune response to xenogeneic tissue implanted in the heart and to find ways to overcome this immune conflict.Modification of the pericardium of large animals by various methods does not remove carbohydrate epitopes of the extracellular matrix and cell membranes, which are recognized by pre-existing antibodies of class M and G. The highly dynamic functioning of xenogeneic biological prostheses increases their antigenicity by reducing the primary cross-linking of the extracellular matrix and activating the alternative complement pathway with adsorption on xenogeneic tissue complement component iC3b, as an opsonin for micro- and macrophages. Inflammatory endotypes of individuals are determined by genetically determined increased synthesis of certain cytokines. In particular, rheumatic heart disease, as the basis for the formation of pathology of the native mitral heart valve, is characterized by an increase in TNF-a, INF-g and IL-6. All of these cytokines may be targets for biological therapies aimed at limiting the constitutional inflammatory endotype. OMICS technologies applied to various options for biological xenogeneic heart valve prostheses degradation, taking into account their implantation and a wide clinical examination of patients, can help to find new variants of immune-inflammatory endotypes leading to dysfunction of bioprostheses and identify target molecules through which the antixenogeneic immune response can be inhibited.
About the Authors
Andrey Vladimirovich ShabaldinRussian Federation
Dr. of Medical Sciences, Associate Professor, leading researcher in the laboratory of heart defects, Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Anna Vladimirovna Blinova
clinical resident Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Alexey Valrievih Evtushenko
Russian Federation
Dr. of Medical Sciences, Head of the laboratory heart diseases, Department of heart and vascular surgery, Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
References
1. Барбараш Л.С., Рогулина Н.В., Рутковская Н.В., Овчаренко Е.А. Механизмы развития дисфункций биологических протезов клапанов сердца // Комплекс. пробл. серд.-сосуд. заболев. – 2018. – Т. 7, № 2. – С. 10–24. Barbarash L.S., Rogulina N.V., Rutkovskaya N.V., Ovcharenko E.A. Mechanisms underlying bioprosthetic heart valve dysfunctions. Complex Issues of Cardiovascular Diseases, 2018, Vol. 7, no. 2, pp. 10-24. DOI: 10.17802/2306-1278-2018-7-2-10-24
2. Глушкова Т.В., Овчаренко Е.А., Рогулина Н.В., Клышников К.Ю., Кудрявцева Ю.А., Барбараш Л.С. Дисфункции эпоксиобработанных биопротезов клапанов сердца // Кардиология. – 2019. – Т. 59, № 10. – С. 49–59. Glushkova T.V., Ovcharenko E.A., Rogulina N.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. Disfunktsii epoksiobrabotannykh bioprotezov klapanov serdtsa. Kardiologiya, 2019, Vol. 59, no. 10, pp. 49–59. DOI: 10.18087/cardio.2019.10.n327
3. Журавлева И.Ю., Карпова Е.В., Опарина Л.А., Кабос Н., Ксенофонтов А.Л., Журавлева А.С., Ничай Н.Р., Богачев-Прокофьев А.В., Трофимов Б.А., Караськов А.М. Ксеноперикард, консервированный ди- и пентаэпоксидами: молекулярные механизмы сшивки и механические свойства биоматериала // Патология кровообращения и кардиохирургия. – 2018. – Т. 22, № 3. - С. 56-68. Zhuravleva I.Yu., Karpova E.V., Oparina L.A., Cabos N., Ksenofontov A.L., Zhuravleva A.S., Nichay N.R., Bogachev-Prokophiev A.V., Trofimov B.A., Karaskov A.M. Bioprosthetic xenopericardium preserved with di- and penta-epoxy compounds: molecular cross-linking mechanisms, surface features and mechanical properties. Patologiya krovoobrashcheniya i kardiokhirurgiya = Circulation Pathology and Cardiac Surgery, 2018, Vol. 22, no. 3, pp. 56-68. DOI: 10.21688/1681-3472-2018-3-56-68
4. Мухамадияров Р.А., Рутковская Н.В., Мильто И.В., Сидорова О.Д., Барбараш Л.С. Клеточный состав эксплантированных биопротезов клапанов сердца при инфекционном эндокардите // Архив патологии. – 2019. – Т. 81, № 6. – С. 16‑23. Mukhamadiyarov R.A., Rutkovskaia N.V., Milto I.V., Sidopova O.D., Barbarash L.S. The cellular composition of explanted bioprosthetic heart valves in infective endocarditis. Russian Journal of Archive of Pathology, 2019, Vol. 81, no. 6, pp. 16 23. DOI: 10.17116/patol20198106116
5. Мухамадияров Р.А., Халивопуло И.К., Евтушенко А.В., Ляпин А.А., Кутихин А.Г. 11-летняя эффективность ксеноперикардиальной заплаты «КемПериплас-Нео» для пластики легочной артерии при радикальной коррекции тетрады Фалло // Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. - 2023. - Т. 11, № 4. - С. 145–154. Mukhamadiyarov R.A., Khalivopulo I.K., Evtushenko A.V., Lyapin A.A., Kutikhin A.G. 11-year efficacy of xenopericardial KemPeriplas-Neo patch for the repair of pulmonary trunk during total surgical repair of tetralogy of Fallot. Clinical and Experimental Surgery. Petrovsky Journal, 2023, Vol. 11, no. 4, pp. 145–154. DOI: 10.33029/2308-1198-2023-11-4-145-154
6. Петров В.С., Смирнова Е.А. Роль полиморфизма генов ADRB1 у исследуемых с хронической ревматической болезнью сердца // Проблемы социальной гигиены, здравоохранения и истории медицины. – 2019. – Т. 27, № 6. – С. 962-966. Petrov V.S., Smirnova E.A. The role of ADRB1 genes polymorphism in examined patients with chronic rheumatic heart disease. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med, 2019, Vol. 27, no. 6, pp. 962-966. DOI: 10.32687/0869-866X-2019-27-6-962-966
7. Понасенко А.В., Головкин А.С., Шабалдин А.В, Цепокина А.В. Особенности распределения частот интронных полиморфизмов IL1-raVNTR И IL-4VNTR при ревматических пороках митрального клапана сердца у европеоидов сибири // Медицинская иммунология. – 2015. – Т. 17, № 2. – С. 151-158. Ponasenko A.V., Golovkin A.S., Shabaldin A.V., Tsepokina A.V. Frequency distribution of intronic polymorphisms of il1-ravntr and il-4vntr in rheumatic mitral valve disease in caucasian population of Siberia. Medical Immunology, 2015, Vol. 17, no. 2, pp. 151-158. DOI: 10.15789/1563-0625-2015-2-151-158
8. Синицкая А.В., Хуторная М.В., Синицкий М.Ю., Хрячкова О.Н., Асанов М.А., Понасенко А.В. Полиморфизм генов воспалительного ответа в патогенезе ревматической болезни сердца // Российский кардиологический журнал. – 2022. – Т. 27, № 10. – С. 5197. Sinitskaya A.V., Khutornaya M.V., Sinitsky M.Yu., Khryachkova O.N., Asanov M.A., Ponasenko A.V. Polymorphism of inflammatory system genes in the pathogenesis of rheumatic heart disease. Russian Journal of Cardiology, 2022, Vol. 27, no. 10, pp. 5197. DOI: 10.15829/1560-4071-2022-5197
9. Aamodt J.M., Grainger D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials, 2016, Vol. 86, pp. 68-82. - DOI: 10.1016/j.biomaterials.2016.02.003
10. Abdallah A.M., Alnuzha A., Al-Mazroea A.H., Eldardear A.E., AlSamman A.Y., Almohammadi Y., Al-Harbi K.M. IL10 Promoter Polymorphisms are Associated with Rheumatic Heart Disease in Saudi Arabian Patients. Pediatr Cardiol., 2016, Vol. 37, no. 1, pp. 99-105. - DOI: 10.1007/s00246-015-1245-y
11. Abul K.A., Andrew H.L., Shiv P. Cellular and Molecular Immunology. Philadelphia: Elsevier Saunders, 2015. - ISBN: 978-0-323-22275-4
12. Amon R., Reuven E.M., Leviatan Ben-Arye S., Padler-Karavani V. Glycans in immune recognition and response. Carbohyd Res., 2014, Vol. 389, pp. 115-122. - DOI: 10.1016/j.carres.2014.02.004
13. Badylak S.F., Gilbert T.W. Immune response to biologic scaffold materials. Semin Immunol., 2008, Vol. 20, no. 2, pp. 109-116. - DOI: 10.1016/j.smim.2007.11.003
14. Barbarash L., Kudryavtsev I., Rutkovskaya N., Golovkin A. T cell response in patients with implanted biological and mechanical prosthetic heart valves. Mediators Inflamm., Vol. 2016, no. 2016, pp. 1937564. - DOI: 10.1155/2016/1937564
15. Barone A., Benktander J., Teneberg S., Breimer M.E. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation, 2014, Vol. 21, no. 6, pp. 510-22. - DOI: 10.1111/xen.12123
16. Böer U., Buettner F.F.R., Schridde A., Klingenberg M., Sarikouch S., Haverich A., Wilhelmi M. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation, 2017, Vol. 24, no. 2. - DOI: 10.1111/xen.12288
17. Bozso S.J., El-Andari R., Al-Adra D., Moon M.C., Freed D.H., Nagendran J., Nagendran J. A review of the immune response stimulated by xenogenic tissue heart valves. Scand J Immunol., 2021, Vol. 93, no. 4, pp. e13018. - DOI: 10.1111/sji.13018
18. Byrne G.W., Du Z., Stalboerger P., Kogelberg H., McGregor C.G. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation, 2014, Vol. 21, no. 6, pp. 543-54. - DOI: 10.1111/xen.12124
19. Choi S., Jeong H., Lim H., Park S.S., Kim S.H., Kim Y.J. Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves. J Heart Valve Dis., 2012, Vol. 21, pp. 387-397. - https://pubmed.ncbi.nlm.nih.gov/22808845/
20. Chung L., Maestas D.R., Housseau F., Elisseeff J.H. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev., 2017, Vol. 114, no. 184-192. - DOI: 10.1016/j.addr.2017.07.006
21. Diamantino Soares A.C., Araújo Passos L.S., Sable C., Beaton A., Ribeiro V.T., Gollob K.J., Dutra W.O., Nunes M.C.P. Circulating cytokines predict severity of rheumatic heart disease. Int J Cardiol., 2019, Vol. 289, pp. 107-109. - DOI: 10.1016/j.ijcard.2019.04.063
22. Dignan R., O'Brien M., Hogan P., Thornton A., Fowler K., Byrne D., Stephens F., Harrocks S. Aortic valve allograft structural deterioration is associated with a subset of antibodies to human leukocyte antigens. J Heart Valve Dis., 2003, Vol. 12, no. 3, pp. 382-391. - https://pubmed.ncbi.nlm.nih.gov/12803340/
23. Faé K.C., Palacios S.A., Nogueira L.G., Oshiro S.E., Demarchi L.M., Bilate A.M., Pomerantzeff P.M., Brandão C., Thomaz P.G., dos Reis M., Sampaio R., Tanaka A.C., Cunha-Neto E., Kalil J., Guilherme L. CXCL9/Mig mediates T cells recruitment to valvular tissue lesions of chronic rheumatic heart disease patients. Inflammation, 2013, Vol. 36, no. 4, pp. 800-11. - DOI: 10.1007/s10753-013-9606-2
24. Farivar R.S., Filsoufi F., Adams D.H. Mechanisms of Gal(alpha)1–3Gal(beta)1–4GlcNAc-R (alphaGal) expression on porcine valve endothelial cells. J Thorac Cardiovasc Surg., 2003, Vol. 125, no. 2, pp. 306-314. - DOI: 10.1067/mtc.2003.76
25. Galili U. The α-Gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation. Biochimie., 2001, Vol. 83, no. 7, pp. 557-563. - DOI: 10.1016/s0300-9084(01)01294-9
26. Gates K.V., Dalgliesh A.J., Griffiths L.G. Antigenicity of bovine pericardium determined by a novel immunoproteomic approach. Sci Rep., 2017, Vol. 7, no. 1, pp. 2446. - DOI: 10.1038/s41598-017-02719-8
27. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, Vol. 392, no. 10159, pp. 1789-1858. - DOI: 10.1016/S0140-6736(18)32279-7
28. Griffiths L.G., Choe L.H., Reardon K.F., Dow S.W., Christopher Orton E. Immunoproteomic identification of bovine pericardium xenoantigens. Biomaterials, 2008, Vol. 29, no. 26, pp. 3514-3520. - DOI: 10.1016/j.biomaterials.2008.05.006
29. Huai G., Qi P., Yang H., Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review). Int J Mol Med., 2016, Vol. 37, no. 1, pp. 11-20. - DOI: 10.3892/ijmm.2015.2397
30. Human P., Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg., 2001, Vol. 71, no. 5 Suppl, pp. S385-388. - DOI: 10.1016/s0003-4975(01)02492-4
31. Human P., Zilla P. Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration? J Long Term Eff Med Implants., 2001, Vol. 11, pp. 199-220. - https://pubmed.ncbi.nlm.nih.gov/11921664/
32. Iung B., Vahanian A. Epidemiology of acquired valvular heart disease. Can J Cardiol., 2014, Vol. 30, no. 9, pp. 962-70. - DOI: 10.1016/j.cjca.2014.03.022
33. Jana S., Tefft B.J., Spoon D.B., Simari R.D. Corrigendum to "Scaffolds for tissue engineering of cardiac valves" [Acta Biomater. 10 (2014) 2877-2893]. Acta Biomater., 2015, Vol. 27, pp. 305. - DOI: 10.1016/j.actbio.2015.06.029
34. Kim W.G., Sung K., Seo J.W. Time-related histopathologic analyses of immunologically untreated porcine valved conduits implanted in a porcine-to-goat model. Artif Organs., 2007, Vol. 31, no. 2, pp. 105-13. - DOI: 10.1111/j.1525-1594.2007.00349.x
35. Konakci K.Z., Bohle B., Blumer R., Hoetzenecker W., Roth G., Moser B., Boltz-Nitulescu G., Gorlitzer M., Klepetko W., Wolner E., Ankersmit H.J. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Invest., 2005, Vol. 35, no. 1, pp. 17-23. - DOI: 10.1111/j.1365-2362.2005.01441.x
36. Kooner A.S., Yu H., Chen X.I. Synthesis of N-glycolylneuraminic acid (Neu5Gc) and its glycosides. Front Immunol., 2019, Vol. 10, pp. 2004. - DOI: 10.3389/fimmu.2019.02004
37. Kosuga T. The effect of allogeneic or xenogeneic immune responses and preservation techniques on transplanted aortic valve grafts. Kurume Med J., 2000, Vol. 47, no. 1, pp. 13-23. - DOI: 10.2739/kurumemedj.47.13
38. Lee W., Hara H., Cooper D.K.C., Manji R.A. Expression of NeuGc on pig heart valves. Xenotransplantation., 2015, Vol. 22, no. 2, pp. 153-4. - DOI: 10.1111/xen.12162
39. Lee W., Long C., Ramsoondar J., Ayares D., Cooper D.K., Manji R.A., Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation, 2016, Vol. 23, no. 5, pp. 370-380. - DOI: 10.1111/xen.12254
40. Maggi L., Capone M., Mazzoni A., Liotta F., Cosmi L., Annunziato F. Plasticity and regulatory mechanisms of human ILC2 functions. Immunol Lett., 2020, Vol. 227, pp. 109-116. - DOI: 10.1016/j.imlet.2020.08.004
41. Manji R.A., Lee W., Cooper D.K.C. Xenograft bioprosthetic heart valves: Past, present and future. Int J Surg., 2015, Vol. 23, no. B, pp. 280-284. - DOI: 10.1016/j.ijsu.2015.07.009
42. Matson S.M., Demoruelle M.K., Castro M. Airway Disease in Rheumatoid Arthritis. Ann Am Thorac Soc., 2022, Vol. 19, no. 3, pp. 343-352. - DOI: 10.1513/AnnalsATS.202107-876CME
43. McMorrow I.M., Comrack C.A., Sachs D.H., DerSimonian H. Heterogeneity of human anti-pig natural antibodies cross-reactive with the Gal(alpha1,3)Galactose epitope. Transplantation, 1997, Vol. 64, no. 3, pp. 501-10. - DOI: 10.1097/00007890-199708150-00021
44. Nagasaka S., Taniguchi S., Nakayama Y., Sakaguchi H., Nishizaki K., Naito H., Morioka H. In vivo study of the effects of cryopreservation on heart valve xenotransplantation. Cardiovasc Pathol., 2005, Vol. 14, no. 2, pp. 70-9. - DOI: 10.1016/j.carpath.2005.01.004
45. Nagasaka S., Taniguchi S., Nakayama Y., Ueda T., Sakaguchi H., Nishizaki K., Naito H. Possibility of xenotransplantation with a cryopreserved porcine heart valve in a canine model. Transplant Proc., 2000, Vol. 32, no. 7, pp. 2417-9. - DOI: 10.1016/s0041-1345(00)01723-1
46. Naso F., Gandaglia A., Bottio T., Tarzia V., Nottle M.B., d'Apice A.J., Cowan P.J., Cozzi E., Galli C., Lagutina I., Lazzari G., Iop L., Spina M., Gerosa G. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation, 2013, Vol. 20, no. 4, pp. 252-261. - DOI: 10.1111/xen.12044
47. Naso F., Gandaglia A., Iop L., Spina M., Gerosa G. Alpha-Gal detectors in xenotransplantation research: a word of caution. Xenotransplantation, 2012, Vol. 19, no. 4, pp. 215-20. - DOI: 10.1111/j.1399-3089.2012.00714.x
48. Niemann H., Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res., 2016, Vol. 25, no. 3, pp. 361-374. - DOI: 10.1007/s11248-016-9934-8
49. O'Keefe K.L., Cohle S.D., McNamara J.E., Hooker R.L. Jr. Early catastrophic stentless valve failure secondary to possible immune reaction. Ann Thorac Surg., 2011, Vol. 91, no. 4, pp. 1269-1272. - DOI: 10.1016/j.athoracsur.2010.09.042
50. Ozkan S., Akay T.H., Gultekin B., Sezgin A., Tokel K., Aslamaci S. Xenograft transplantation in congenital cardiac surgery at Baskent University: midterm results. Transplant Proc., 2007, Vol. 39, no. 4, pp. 1250-4. - DOI: 10.1016/j.transproceed.2007.02.029
51. Park S., Kim W.H., Choi S.Y., Kim Y.J. Removal of alpha-Gal epitopes from porcine aortic valve and pericardium using recombinant human alpha galactosidase A. J Korean Med Sci., 2009, Vol. 24, no. 6, pp. 1126-1131. - DOI: 10.3346/jkms.2009.24.6.1126
52. Poomarimuthu M., Elango S., Solomon P.R., Soundarapandian S., Mariakuttikan J. Lack of Association between TNF-α, IFN-γ, IL-10 Gene Polymorphisms and Rheumatic Heart Disease in South Indian Population. Fetal Pediatr Pathol., 2018, Vol. 37, no. 5, pp. 309-318. - DOI: 10.1080/15513815.2018.1494232
53. Rehman S., Akhtar N., Saba N., Munir S., Ahmed W., Mohyuddin A., Khanum A. Study on the association of TNF-α(-308), IL-6(-174), IL-10(-1082) and IL-1Ra(VNTR) gene polymorphisms with rheumatic heart disease in Pakistani patients. Cytokine, 2013, Vol. 61, no. 2, pp. 527-31. - DOI: 10.1016/j.cyto.2012.10.020
54. Reuven E.M., Leviatan Ben-Arye S., Marshanski T., Breimer M.E., Yu H., Fellah-Hebia I., Roussel J.C., Costa C., Galiñanes M., Mañez R., Le Tourneau T., Soulillou J.P., Cozzi E., Chen X., Padler-Karavani V. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation, 2016, Vol. 23, no. 5, pp. 381-392. - DOI: 10.1111/xen.12260
55. Ridker P.M., Rane M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ Res., 2021, Vol. 128, no. 11, pp. 1728-1746. - DOI: 10.1161/CIRCRESAHA.121.319077
56. Salama A., Evanno G., Harb J., Soulillou J.P. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation, 2015, Vol. 22, no. 2, pp. 85-94. - DOI: 10.1111/xen.12142
57. Salie M.T, Yang J., Ramírez Medina C.R., Zühlke L.J., Chishala C., Ntsekhe M., Gitura B., Ogendo S., Okello E., Lwabi P., Musuku J., Mtaja A., Hugo-Hamman C., El-Sayed A., Damasceno A., Mocumbi A., Bode-Thomas F., Yilgwan C., Amusa G.A., Nkereuwem E., Shaboodien G., Da Silva R., Lee D.C.H., Frain S., Geifman N., Whetton A.D., Keavney B., Engel M.E.; RHDGen Network Consortium. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin Proteomics, 2022, Vol. 19, no. 1, pp. 7. - DOI: 10.1186/s12014-022-09345-1
58. Samuel M., Tardif J.C., Bouabdallaoui N., Khairy P., Dubé M.P., Blondeau L., Guertin M.C. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Can J Cardiol., 2021, Vol. 37, no. 5, pp. 776-785. - DOI: 10.1016/j.cjca.2020.10.006
59. Seifert M., Bayrak A., Stolk M., Souidi N., Schneider M., Stock U.A., Brockbank K.G. Xeno-immunogenicity of icefree cryopreserved porcine leaflets. J Surg Res., 2015, Vol. 193, no. 2, pp. 933-41. - DOI: 10.1016/j.jss.2014.10.016
60. Sharma A., Naziruddin B., Cui C., Martin M.J., Xu H., Wan H., Lei Y., Harrison C., Yin J., Okabe J., Mathews C., Stark A., Adams C.S., Houtz J., Wiseman B.S., Byrne G.W., Logan J.S. Pig cells that lack the gene for alpha1-3 galactosyltransferase express low levels of the gal antigen. Transplantation, 2003, Vol. 75, no. 4, pp. 430-436. - DOI: 10.1097/01.TP.0000053615.98201.77
61. Song F., Liu F.Z., Liang Y.F., Tse G., Li X., Liao H.T., Chen J.Y. Clinical, sonographic characteristics and long-term prognosis of valvular heart disease in elderly patients. J Geriatr Cardiol., 2019, Vol. 16, no. 1, pp. 33-41. - DOI: 10.11909/j.issn.1671-5411.2019.01.007
62. Sung K., Kim W.G., Seo J.W. Immunologically untreated fresh xenograft implantation in a pig-to-goat model. Artif Organs., 2008, Vol. 32, no. 10, pp. 810-5. - DOI: 10.1111/j.1525-1594.2008.00650.x
63. Tarn J.R., Lendrem D.W., Isaacs J.D. In search of pathobiological endotypes: a systems approach to early rheumatoid arthritis. Expert Rev Clin Immunol., 2020, Vol. 16, no. 6, pp. 621-630. - DOI: 10.1080/1744666X.2020.1771183
64. Tormin J.P.A.S., Nascimento B.R., Sable C.A., da Silva J.L.P., Brandao-de-Resende C., Rocha L.P.C., Pinto C.H.R., Neves E.G.A., Macedo F.V.B., Fraga C.L., Oliveira K.K.B., Diamantino A.C., Ribeiro A.L.P., Beaton A.Z., Nunes M.C.P., Dutra W.O.; PROVAR (Programa de RastreamentO da VAlvopatia Reumática) investigators. Cytokine gene functional polymorphisms and phenotypic expression as predictors of evolution from latent to clinical rheumatic heart disease. Cytokine, 2021, Vol. 138, pp. 155370. - DOI: 10.1016/j.cyto.2020.155370
65. Vadori M., Cozzi E. The immunological barriers to xenotransplantation. Tissue Antigens, 2015, Vol. 86, no. 4, pp. 239-53. - DOI: 10.1111/tan.12669
66. Veraar, C., Koschutnik, M., Nitsche, C., Laggner M., Polak D., Bohle B., Mangold A., Moser B., Mascherbauer J., Ankersmit H.J. Inflammatory immune response in recipients of transcatheter aortic valves. JTCVS Open, 2021, Vol. 6, pp. 85-96. - DOI: 10.1016/j.xjon.2021.02.012
67. Wang L., Luqmani R., Udalova I.A. The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat Rev Rheumatol., 2022, Vol. 18, no. 3, pp. 158-170. - DOI: 10.1038/s41584-021-00738-4
68. Wood K.J., Goto R. Mechanisms of rejection: current perspectives. Transplantation., 2012, Vol. 93, no. 1, pp. 1-10. - DOI: 10.1097/TP.0b013e31823cab44
Supplementary files
Review
For citations:
Shabaldin A.V., Blinova A.V., Evtushenko A.V. FEATURES OF THE IMMUNE RESPONSE TO XENOGENIC TISSUES OF VALVES AND PATCHES OF THE HEART (literature review). Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-FOT-3159