Preview

Medical Immunology (Russia)

Advanced search

CAR T cells and metabolic programming: A review

https://doi.org/10.15789/1563-0625-CTC-3155

Abstract

Chimeric antigen receptor (CAR) T cell therapy shown a promising treatment for haematological malignancies. Although it has successful achievement in hematological malignancies, there are major challenges that remain to be resolved to the broad application. To overcome these obstacles, changes in metabolism during the preparation of CAR T cells increase their therapeutic specificity and potency. Therefore, generation of CAR T cells with manipulated metabolic pathways could beneficially enhance antitumor immunity. Here in this review we summarize the latest advances and new strategies that have been developed to improve the metabolic fitness and antitumor activity of CAR T cells products.

About the Authors

Shekoufeh Hatami
Fasa University of Medical Sciences
Islamic Republic of Iran

Department of Biochemistry

Fasa



Fatemeh Kazemi
Metabolic Disease Research Center, Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Science
Islamic Republic of Iran

Qazvin



Parisa Doroudgar
Dental School, Tehran University of Medical Sciences
Islamic Republic of Iran

Tehran



Sahar Shomeil Shushtari
School of Rehabilitation, Ahvaz Jundishapur University of Medical Science

PhD, Department of Audiology

Ahvaz



Mohammad Reza Atashzar
Fasa University of Medical Sciences
Islamic Republic of Iran

PhD, Department of Immunology

Fasa



References

1. Akbari B., Ghahri-Saremi N., Soltantoyeh T., Hadjati J., Ghassemi S., Mirzaei H.R. Epigenetic strategies to boost CAR T cell therapy. Mol. Ther., 2021, Vol. 29, no. 9, pp. 2640-2659.

2. Aksoylar H.-I., Tijaro-Ovalle N.M., Boussiotis V.A., Patsoukis N. T cell metabolism in cancer immunotherapy. Immunometabolism, 2020, Vol. 2, no. 3, e200020. doi: 10.20900/immunometab20200020.

3. Alizadeh D., Wong R.A., Yang X., Wang D., Pecoraro J.R., Kuo C.-F., Aguilar B., Qi Y., Ann D.K., Starr R., Urak R., Wang X., Forman S.J., Brown C.E. aIL15 Enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotypesuperior antitumor activity of CAR-T cells cultured in IL15. Cancer Immunol. Res., 2019, Vol. 7, no. 5, pp. 759-772.

4. Alsina M., Shah N., Raje N.S., Jagannath S., Madduri D., Kaufman J.L., Siegel D.S., Munshi N.C., Rosenblatt J., Lin Y., Jakubowiak A., Jasielec J., Timm A., Turka A., Mao P., Martin N., Campbell T.B., Hege K., Bitter H., Petrocca F., Berdeja J.G. Updated results from the phase I CRB-402 study of anti-Bcma CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: correlation of expansion and duration of response with T cell phenotypes. Blood, 2020, Vol. 136, pp. 25-26.

5. Arcangeli S., Bove C., Mezzanotte C., Camisa B., Falcone L., Manfredi F., Bezzecchi E., Khoury R-E., Norata R., Sanvito F., Ponzoni M., Greco B., Moresco M.-A., Carrabba M.-G., Ciceri F., Bonini C., Bondanza A., Casucci M. CAR T-cell manufacturing from naive/stem memory T-lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest., 2022, Vol. 132, no. 12, e150807. doi: 10.1172/JCI150807.

6. Atkins R.M., Menges M.A., Bauer A., Turner J.G., Locke F.L. Metabolically flexible CAR T Cells (mfCAR-T), with constitutive expression of PGC-1α resistant to post translational modifications, exhibit superior survival and function in vitro. Blood, 2020, Vol. 136, p. 30.

7. Baixauli F, Martín-Cófreces N.B., Morlino G., Carrasco Y.R., Calabia-Linares C., Veiga E., Serrador J-M., Sánchez-Madrid F. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J., 2011, Vol. 30, no. 7, pp. 1238-1250.

8. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.-J., Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, Vol. 439, no. 7077, pp. 682-687.

9. Battram A., Bachiller M., Urbano-Ispizua Á., Martin-Antonio B. 104 BCMA-targeting CAR-T cells expanded in IL-15 have an improved phenotype for therapeutic use compared to those grown in IL-2 or IL-15/IL-7. BMJ, 2020, Vol. 8, pp. A115-A115.

10. Beavis P.A., Henderson M.A., Giuffrida L., Mills J.K., Sek K., Cross R.S., Davenport A.-J., John L.-B., Mardiana S., Slaney C.-Y., Ricky W., Johnstone R.-W., Trapani J.-A., Stagg J., Loi S., Kats L., Gyorki D., Kershaw M.H., Darcy P.-K. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest., 2017, Vol. 127, no. 3, pp. 929-941.

11. Beavis P.A., Milenkovski N., Henderson M.A., John L.B., Allard B., Loi S., Kershaw M.-H., Stagg J., Darcy P.-c K. Adenosine receptor 2A blockade increases the efficacy of anti–PD-1 through enhanced antitumor T-cell responses. Cancer Immunol. Res., 2015, Vol. 3, no. 5, pp. 506-517.

12. Beavis P.A., Slaney C.Y., Kershaw M.H., Gyorki D., Neeson P.J., Darcy P.K. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin. Immunol., 2016, Vol. 28, no. 1, pp. 64-72.

13. Bishop E.L., Gudgeon N., Dimeloe S. Control of T cell metabolism by cytokines and hormones. Front. Immunol., 2021, Vol. 12, 653605. doi: 10.3389/fimmu.2021.653605.

14. Blackburn S.D., Shin H., Haining W.N., Zou T., Workman C.J., Polley A., Betts M.-R., Freeman G.-J., Vignali D.-A., Wherry E.-J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol., 2009, Vol. 10, no. 1, pp. 29-37.

15. Bonini C., Mondino A. Adoptive T-cell therapy for cancer: The era of engineered T cells. Eur. J. Immunol., 2015, Vol. 45, no. 9, pp. 2457-2469.

16. Bose S., Le A. Glucose metabolism in cancer. Adv. Exp. Med. Biol., 2018, Vol. 1063, pp. 3-12.

17. Buck M.D., O’Sullivan D., Geltink R.I.K., Curtis J.D., Chang C.-H., Sanin D.E., Qiu J., Kretz O., Braas D., Windt G.-W., Chen Q., Huang S.-C.-C., O’Neill C.-M., Edelson B.-T., Pearce E.-J., Sesaki H., Huber T.-B., Rambold A.-S., Pearce E.-J. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell, 2016, Vol. 166, no. 1, pp. 63-76.

18. Cao Y., Lu W., Sun R., Jin X., Cheng L., He X., Wang L., Yuan T., Lyu C., Zhao M. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell nonHodgkin lymphoma. Front. Oncol., 2019, Vol. 9, 767. doi: 10.3389/fonc.2019.00767.

19. Carrio R., Bathe O.F., Malek T.R. Initial antigen encounter programs CD8+ T cells competent to develop into memory cells that are activated in an antigen-free, IL-7-and IL-15-rich environment. J. Immunol., 2004, Vol. 172, no. 12, pp. 7315-7323.

20. Catalán E., Charni S., Jaime P., Aguiló J.I., Enríquez J.A., Naval J., Julián P., Martín V., Alberto A. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncoimmunology, 2015, Vol. 4, no. 1, e985924. doi: 10.4161/2162402X.2014.985924.

21. Chamoto K., Chowdhury P.S., Kumar A., Sonomura K., Matsuda F., Fagarasan S., Honjo T. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl. Acad. Sci. USA, 2017, Vol. 114, no. 5, pp. E761-E70.

22. Chang C.-H., Curtis J.D., Maggi L.B. Jr., Faubert B., Villarino A.V., O’Sullivan D., Huang S.-C.-C., Windt G.-J.W., Blagih J., Qiu J., Weber J.-D., Pearce E.-J., Jones R-G., Pearce E-L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, Vol. 153, no. 6, pp. 1239-1251.

23. Chang C.-H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., Chen Q., Gindin M., Gubin M.-c M., van der Windt G.-J.W., Tonc E., Schreiber R.-D., Pearce E.-J., Pearce E.-L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, Vol. 162, no. 6, pp. 1229-1241.

24. Chatterjee S., Chakraborty P., Daenthanasanmak A., Iamsawat S., Andrejeva G., Luevano L.A., Wolf M., Baliga U., Krieg C., Beeson C.-C., Mehrotra M., Hill E.-G., Rathmell J.-C., Yu X.-Z., Kraft A-S., Mehrotra S. Targeting PIM Kinase with PD1 Inhibition improves immunotherapeutic antitumor T-cell responsePIM-K inhibition potentiates ACT. Clin. Cancer Res., 2019, Vol. 25, no. 3, pp. 1036-1049.

25. Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, Vol. 13, no. 4, pp. 227-242.

26. Corrado M., Pearce E.L. Targeting memory T cell metabolism to improve immunity. J. Clin. Invest., 2022, Vol. 132, no. 1, e148546. doi: 10.1172/JCI148546.

27. Crawford A., Wherry E.J. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol., 2009, Vol. 21, no. 2, pp. 179-186.

28. Cronin S.J., Seehus C., Weidinger A., Talbot S., Reissig S., Seifert M., Pierson Y., McNeill E., Longhi M. S., Turnes B.-L., Kreslavsky T., Kogler M., Hoffmann D., Ticevic M., Scheffer D.-L., Tortola L., Cikes D., Jais A., Rangachari M., Rao S., Paolino M., Novatchkova M., Aichinger M., Barrett L., Latremoliere A., Wirnsberger G., Lametschwandtner G., Busslinger M., Zicha S., Latini A., Robson S.-C., Waisman A., Andrews N., Costigan M., Channon K.-M., Weiss G., Kozlov A.-V., Tebbe M., Johnsson K., Woolf C-J., Penninger J-M. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, Vol. 563, no. 7732, pp. 564-568.

29. Cui G., Staron M.M., Gray S.M., Ho P.-C., Amezquita R.A., Wu J., Kaech S.-M. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell, 2015, Vol. 161, no. 4, pp. 750-761.

30. Curran K.J., Pegram H.J., Brentjens R.J. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med., 2012, Vol. 14, no. 6, pp. 405-415.

31. Eshhar Z. The T-body approach: redirecting T cells with antibody specificity. Handb. Exp. Pharmacol., 2008, Vol. 181, pp. 329-342.

32. Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA, 1993, Vol. 90, no. 2, pp. 720-724.

33. Foskolou I.P., Barbieri L., Vernet A., Bargiela D., Cunha P.P., Velica P., Suh E., Pietsch S., Matuleviciute R., Rundqvist H., McIntyre D., Smith K.-G.C., Johnson R.-S. The S enantiomer of 2-hydroxyglutarate increases central memory CD8 populations and improves CAR-T therapy outcome. Blood Adv., 2020, Vol. 4, no. 18, pp. 4483-4493.

34. Fourcade J., Sun Z., Pagliano O., Guillaume P., Luescher I.F., Sander C., Kirkwood J.-M., Olive D., Kuchroo V., Zarour H.-M. CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1tumor antigen-specific T cells coexpress BTLA and PD-1. Cancer Res., 2012, Vol. 72, no. 4, pp. 887-896.

35. Fraietta J.A., Nobles C.L., Sammons M.A., Lundh S., Carty S.A., Reich T.J., Cogdill A.-P., Morrissette J.J.-D., de Nizio J.-E., Reddy S., Hwang Y., Gohil M., Kulikovskaya I., Nazimuddin F., Gupta M., Chen F., Everett J.-K., Alexander K.-A., Lin-Shiao E., Gee M.-H., Liu X., Young R.-M., Ambrose D., Wang Y., Xu J., Jordan M.-S., Marcucci K.-T., Levine L.B., Garcia K.-C., Zhao Y., Kalos M., Porter D.-L., Kohli R.-M., Lacey S.-F., Berger S.-L., Bushman F.-D., June C.-H., Melenhorst J.J. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, Vol. 558, no. 7709, pp. 307-312.

36. Frauwirth K.A., Riley J.L., Harris M.H., Parry R.V., Rathmell J.C., Plas D.R., Elstrom R.-L., June C.-H., Thompson C.-B. The CD28 signaling pathway regulates glucose metabolism. Immunity, 2002, Vol. 16, no. 6, pp. 769-777.

37. Fukumura D., Xu L., Chen Y., Gohongi T., Seed B., Jain R.K. Hypoxia and acidosis independently upregulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res., 2001, Vol. 61, no. 16, pp. 6020-6024.

38. Fultang L., Booth S., Yogev O., Martins da Costa B., Tubb V., Panetti S., Stavrou V., Scarpa U., Jankevics A., Lloyd G., Southam A., Lee S.-P., Dunn W.-B., Chesler L., Mussai F., de Santo C. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood, 2020, Vol. 136, no. 10, pp. 1155-1160.

39. Geiger R., Rieckmann J.C., Wolf T., Basso C., Feng Y., Fuhrer T., Kogadeeva M., Picotti P., Meissner F., Mann M., Zamboni N., Sallusto F., Lanzavecchia A. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, Vol. 167, no. 3, pp. 829-842.e13.

40. Ghassemi S., Martinez-Becerra F.J., Master A.M., Richman S.A., Heo D., Leferovich J., Tu Y., GarcíaCañaveras J.-C., Ayari A., Lu Y., Wang A., Rabinowitz J.-D., Milone M-C., June C.-H., O’Connor R.-S. Enhancing chimeric antigen receptor T cell anti-tumor function through advanced media design. Mol. Ther. Methods Clin. Dev., 2020, Vol. 18, pp. 595-606.

41. Gross G., Waks T., Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA, 1989, Vol. 86, no. 24, pp. 10024-10028.

42. Haji-Fatahaliha M., Hosseini M., Akbarian A., Sadreddini S., Jadidi-Niaragh F., Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. Artif. Cells Nanomed. Biotechnol., 2016, Vol. 44, no. 6, pp. 1339-1349.

43. Hermans D., Gautam S., García-Cañaveras J.C., Gromer D., Mitra S., Spolski R., Li P., Christensen S., Nguyen R., Lin J.-X., Oh J., Du N., Veenbergen S., Fioravanti J., Ebina-Shibuya R., Bleck C., Neckers L.-M., Rabinowitz J.-D., Gattinoni L., Leonard W.-J. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc. Natl. Acad. Sci. USA, 2020, Vol. 117, no. 11, pp. 6047-6055.

44. Hillerdal V., Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs, 2015, Vol. 29, no. 2, pp. 75-89.

45. Hirabayashi K., Du H., Xu Y., Shou P., Zhou X., Fucá G., Landoni E., Sun C., Chen Y., Savoldo B., Dotti G. Dual targeting CAR-T cells with optimal costimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer, 2021, Vol. 2, no. 9, pp. 904-918.

46. Ho P.-C., Bihuniak J.D., Macintyre A.N., Staron M., Liu X., Amezquita R., Tsui Y.-C., Cui G., Micevic G., Perales J.-C., Kleinstein S.-H., Abel E.-D., Insogna K.-L., Feske S., Locasale J.-W., Bosenberg M.-W., Rathmell J.-C., Kaech S.-M. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell, 2015, Vol. 162, no. 6, pp. 1217-1228.

47. Ho P.-C., Liu P.-S. Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. J. Immunother. Cancer, 2016, Vol. 4, no. 1, pp. 1-9.

48. Huang Q., Xia J., Wang L., Wang X., Ma X., Deng Q., Lu Y., Kumar M., Zhou Z., Li L., Zeng Z., Young K.-H., Yi Q., Zhang M., Li Y. miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J. Hematol. Oncol., 2018, Vol. 11, no. 1, pp. 1-12.

49. Huang Y., Li D., Qin D., Gou H., Wei W., Wang Y., Wei Y.-Q., Wang W. Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy. Gene Ther., 2018, Vol. 25, no. 3, pp. 192-197.

50. Jacobs S.R., Herman C.E., MacIver N.J., Wofford J.A., Wieman H.L., Hammen J.J., Rathmell J.-C. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol., 2008, Vol. 180, no. 7, pp. 4476-4486.

51. Jena B., Rushworth D., McNamara G.T., Cooper L.J. Mitochondrial biomass as a measure of fitness for T cells expressing chimeric antigen receptors. Blood, 2015, Vol. 126, no. 23, p. 3242.

52. Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis., 2017, Vol. 4, no. 1, pp. 25-27.

53. Jiang J., Srivastava S., Zhang J. Starve cancer cells of glutamine: break the spell or make a hungry monster? Cancers, 2019, Vol. 11, no. 6, 804. doi: 10.3390/cancers11060804.

54. Jin H.-T., Anderson A.C., Tan W.G., West E.E., Ha S.-J., Araki K., Freeman G.-J., Kuchroo V.-K., Ahmed R. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, no. 33, pp. 14733-14738.

55. John L.B., Kershaw M.H., Darcy P.K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology, 2013, Vol. 2, no. 10, e26286. doi: 10.4161/onci.26286.

56. Joller N., Hafler J.P., Brynedal B., Kassam N., Spoer S., Levin S.D., Sharpe A.-H., Kuchroo V.-K. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol., 2011, Vol. 186, no. 3, pp. 1338-1342.

57. Jones N., Vincent E.E., Cronin J.G., Panetti S., Chambers M., Holm S.R., Sian E., Owens S.-E., Francis N.-J., Finlay D.-K., Thornton C.-A. Akt and STAT5 mediate naïve human CD4+ T-cell early metabolic response to TCR stimulation. Nat. Commun., 2019, Vol. 10, no. 1, pp. 1-13.

58. Jung I.-Y., Kim Y.-Y., Yu H.-S., Lee M., Kim S., Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res., 2018, Vol. 78, no. 16, pp. 4692-4703.

59. Kagoya Y., Nakatsugawa M., Yamashita Y., Ochi T., Guo T., Anczurowski M., Saso K., Butler M.-O., Arrowsmith C.-H., Hirano N. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest., 2016, Vol. 126, no. 9, pp. 3479-3494.

60. Kawalekar O.U., O’Connor R.S., Fraietta J.A., Guo L., McGettigan S.E., Posey A.D. Jr., Patel P.-R., Guedan S., Scholler J., Keith B., Snyder N.-W., Blair I.-A., Milone M.-C., June C.-H. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity, 2016, Vol. 44, no. 2, pp. 380-390.

61. Kim E.H., Sullivan J.A., Plisch E.H., Tejera M.M., Jatzek A., Choi K.Y., Suresh M. Signal integration by Akt regulates CD8 T cell effector and memory differentiation. J. Immunol., 2012, Vol. 188, no. 9, pp. 4305-4314.

62. Klebanoff C.A., Crompton J.G., Leonardi A.J., Yamamoto T.N., Chandran S.S., Eil R.L., Sukumar M., Vodnala S.-K., Hu J., Ji Y., Clever D., Black M.-A., Gurusamy D., Kruhlak M.-J., Jin P., Stroncek D.-F., Gattinoni L., Feldman S.-A., Restifo N.-P. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptorengineered adoptive immunotherapy. JCI insight, 2017, Vol. 2, no. 23, e95103. doi: 10.1172/jci.insight.95103.

63. Kondo T., Ando M., Nagai N., Tomisato W., Srirat T., Liu B., Mise-Omata S., Ikeda M., Chikuma S., Nishimasu H., Nureki O., Ohmura M., Hayakawa N., Hishiki T., Uchibori R., Ozawa K., Yoshimura A. The NOTCH– FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory-like CAR-T cells. Cancer Res., 2020, Vol. 80, no. 3, pp. 471-483.

64. Kouidhi S., Ben Ayed F., Benammar Elgaaied A. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front. Immunol., 2018, Vol. 9, 353. doi: 10.3389/fimmu.2018.00353.

65. Leone R.D., Zhao L., Englert J.M., Sun I.-M., Oh M.-H., Sun I.-H., Arwood M.-L., Bettencourt I.-A., Patel C.-H., Wen J., Tam A., Blosser R.-L., Prchalova E., Alt J., Rais R., Slusher B.-S., Powell J.-D. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science, 2019, Vol. 366, no. 6468, pp. 1013-1021.

66. Li L., Li Q., Yan Z.X., Sheng L.S., Fu D., Xu P., Wang L., Zhao W.-L. Transgenic expression of IL-7 regulates CAR-T cell metabolism and enhances in vivo persistence against tumor cells. Sci. Rep., 2022, Vol. 12, no. 1, 12506. doi: 10.1038/s41598-022-16616-2.

67. Lin H., Cheng J., Mu W., Zhou J., Zhu L. Advances in universal CAR-T cell therapy. Front. Immunol., 2021, Vol. 12, 744823. doi: 10.3389/fimmu.2021.744823.

68. Long A.H., Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., Smith J-P., Walker A-J., Kohler M-E., Venkateshwara V-R., Kaplan R-N., Patterson G-H., Fry T-J., Orentas R-J., Mackall C-L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med., 2015, Vol. 21, no. 6, pp. 581-590.

69. López-Cantillo G., Urueña C., Camacho B.A., Ramírez-Segura C. CAR-T cell performance: how to improve their persistence? Front. Immunol., 2022, Vol. 13, 878209. doi: 10.3389/fimmu.2022.878209.

70. Loschinski R., Böttcher M., Stoll A., Bruns H., Mackensen A., Mougiakakos D. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget, 2018, Vol. 9, no. 17, pp. 13125-13138.

71. Lynn R.C., Weber E.W., Sotillo E., Gennert D., Xu P., Good Z., Anbunathan H., Lattin J., Jones R., Tieu V., Nagaraja S., Granja J., Bourcy C.-F.-A., Majzner R., Satpathy A.-T., Quake S.-R., Monje M., Chang H.-Y., Mackall C.-L. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, Vol. 576, no. 7786, pp. 293-300.

72. Ma X., Bi E., Lu Y., Su P., Huang C., Liu L., Qiang Wang Q., Yang M., Kalady M.-F., Qian J., Zhang A., Gupte A.-A., Hamilton D.-J., Zheng C., Yi Q. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab., 2019, Vol. 30, no. 1, pp. 143-156.e5.

73. Ma X., Shou P., Smith C., Chen Y., Du H., Sun C., Porterfield Kren N., Michaud D., Ahn S., Vincent B., Savoldo B., Pylayeva-Gupta Y., Zhang S., Dotti G., Xu Y. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol., 2020, Vol. 38, no. 4, pp. 448-459.

74. Majzner R.G., Mackall C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Dscov., 2018, Vol. 8, no. 10, pp. 1219-1226.

75. Man K., Gabriel S.-S., Liao Y., Gloury R., Preston S., Henstridge D.-C., Pellegrini M., Zehn D., BerberichSiebelt F., Febbraio M.-A., Shi W., Kallies A. Transcription factor IRF4 promotes CD8 T cell exhaustion and limits the development of memory-like t cells during chronic infection. Immunity, 2017, Vol. 47, no. 6, pp. 1129-1141.e5.

76. Marchesi F., Vignali D., Manini B., Rigamonti A., Monti P. Manipulation of glucose availability to boost cancer immunotherapies. Cancers, 2020, Vol. 12, no. 10, 2940. doi: 10.3390/cancers12102940.

77. Marofi F., Motavalli R., Safonov V.A., Thangavelu L., Yumashev A.V., Alexander M., Shomali N., Chartrand M.-S., Pathak Y., Jarahian M., Izadi S., Hassanzadeh A., Shirafkan N., Tahmasebi S., Motavalli Khiavi F. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther., 2021, Vol. 12, no. 1, 81. doi: 10.1186/s13287-020-02128-1.

78. Menk A.V., Scharping N.E., Rivadeneira D.B., Calderon M.J., Watson M.J., Dunstane D., Watkins S.-C., Delgoffe G.-M. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med., 2018, Vol. 215, no. 4, pp. 1091-1100.

79. Mousset C.M., Hobo W., de Ligt A., Baardman S., Schaap N.P., Jansen J.H., Waart A.-B.V.-D., Dolstra H. Cell composition and expansion strategy can reduce the beneficial effect of AKT-inhibition on functionality of CD8+ T cells. Cancer Immunol. Immunother., 2020, Vol. 69, no. 11, pp. 2259-2273.

80. Nabe S., Yamada T., Suzuki J., Toriyama K., Yasuoka T., Kuwahara M., Shiraishi A., Takenaka K., Yasukawa M., Yamashita M. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction. Cancer Sci., 2018, Vol. 109, no. 12, pp. 3737-3750.

81. Ninomiya S., Narala N., Huye L., Yagyu S., Savoldo B., Dotti G., Heslop H.-E., Brenner M.-K., Rooney C. M., Ramos C.-A. Tumor indoleamine 2, 3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood,, 2015, Vol. 125, no. 25, pp. 3905-3916.

82. Ohno M., Ohkuri T., Kosaka A., Tanahashi K., June C.H., Natsume A., Okada H. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J. Immunother. Cancer, 2013, Vol. 1, no. 1, pp. 1-12.

83. Pacella I., Procaccini C., Focaccetti C., Miacci S., Timperi E., Faicchia D., Severa M., Rizzo F., Coccia E.-M., Bonacina F., Mitro N., Norata G.-D., Rossetti G., Ranzani V., Pagani M., Giorda E., Wei Y., Matarese G., Barnaba V., Piconese S. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc. Natl. Acad. Sci. USA, 2018, Vol. 115, no. 28, pp. E6546-E55.

84. Pellegrino M., del Bufalo F., de Angelis B., Quintarelli C., Caruana I., de Billy E. Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells, 2021, Vol. 10, no. 1, 14. doi: 10.3390/cells10010014.

85. Quintarelli C., Orlando D., Boffa I., Guercio M., Polito V.A., Petretto A., Lavarello C., Sinibaldi M., Weber G., Bufalo F.-D., Giorda E., Scarsella M., Petrini S., Pagliara D., Locatelli F., Angelis B.-D., Caruana I. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology, 2018, Vol. 7, no. 6, e1433518. doi: 10.1080/2162402X.2018.1433518.

86. Ramos C.A., Heslop H.E., Brenner M.K. CAR-T cell therapy for lymphoma. Ann. Rev. Med., 2016, Vol. 67, pp. 165-183.

87. Roex G., Timmers M., Wouters K., Campillo-Davo D., Flumens D., Schroyens W., Chu W., Berneman Z.-N., Lion E., Luo F., Anguille S.J. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J. Hematol. Oncol., 2020, Vol. 13, no. 1, pp. 1-14.

88. Rompton J.G., Sukumar M., Roychoudhuri R., Clever D., Gros A., Eil RL., Tran E.,Hanada K.-I., Yu Z., Palmer D.-C., Kerkar S.-P., Michalek R.-D., Upham T., Leonardi A., Acquavella N., Wang E., Marincola F.-M., Gattinoni L., Muranski P., Sundrud M.-S., Klebanoff C.-A., Rosenberg S.-A., Fearon D.-T., Restifo N.-P. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristicsakt inhibition improves T-cell antitumor immunity. Cancer Res., 2015, Vol. 75, no. 2, pp. 296-305.

89. Ron-Harel N., Santos D., Ghergurovich J.M., Sage P.T., Reddy A., Lovitch S.B., Dephoure N., Satterstrom F.-K., Sheffer M., Spinelli J.-B., Gygi S., Rabinowitz J.-D., Sharpe A.-H., Haigis M-C. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab., 2016, Vol. 24, no. 1, pp. 104-117.

90. Rosenberg S. CAR T cell receptor immunotherapy for patients with B-cell lymphoma. National Cancer Institute (NCI). Available at: https://clinicaltrials.gov/study/NCT00924326.

91. Rostamian H., Fallah-Mehrjardi K., Khakpoor-Koosheh M., Pawelek J.M., Hadjati J., Brown C.E., Mirzaei H.-R. A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Lett., 2021, Vol. 500, pp. 107-118.

92. Salmond R.J. mTOR regulation of glycolytic metabolism in T cells. Frontiers in Cell and Developmental Biology, 2018, Vol. 6:122.

93. Sanchez-Paulete A.R., Labiano S., Rodriguez-Ruiz M.E., Azpilikueta A., Etxeberria I., Bolaños E., Lang V., Rodriguez M., Aznar A.M., Jure-Kunkel M., Melero I. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur. J. Immunol., 2016, Vol. 46, no. 3, pp. 513-522.

94. Scharping N.E., Menk A.V., Moreci R.S., Whetstone R.D., Dadey R.E., Watkins S.C., Ferris R.-L., Delgoffe G.-M. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity, 2016, Vol. 45, no. 2, pp. 374-388.

95. Shen L., Xiao Y., Zhang C., Li S., Teng X., Cui L., Liu T., Wu N., Lu Z. Metabolic reprogramming by ex vivo glutamine inhibition endows CAR-T cells with less-differentiated phenotype and persistent antitumor activity. Cancer Lett., 2022, Vol. 538, 215710. doi: 10.1016/j.canlet.2022.215710.

96. Simula L., Campanella M., Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol. Res., 2019, Vol. 146, 104317. doi: 10.1016/j.phrs.2019.104317.

97. Siska P.J., van der Windt G.J., Kishton R.J., Cohen S., Eisner W., MacIver N.J., Kater A.-P., Weinberg J.-B., Rathmell J.-C. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. J. Immunol., 2016, Vol. 197, no. 6, pp. 2532-2540.

98. Steentoft C., Migliorini D., King T.R., Mandel U., June C.H., Posey A.D. Jr. Glycan-directed CAR-T cells. Glycobiology, 2018, Vol. 28, no. 9, pp. 656-669.

99. Suarez E.R., Chang D.-K., Sun J., Sui J., Freeman G.J., Signoretti S., Zhu Q., Marasco W.-A. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget, 2016, Vol. 7, no. 23, 34341-34355.

100. Sukumar M., Kishton R.J., Restifo N.P. Metabolic Reprograming of anti-tumor immunity. Curr. Opin. Immunol., 2017, Vol. 46, pp. 14-22.

101. Sukumar M., Liu J., Ji Y., Subramanian M., Crompton J.G.., Yu Z., Roychoudhuri R., Palmer D.-C., Muranski P., Karoly E.-D., Mohney R.-P., Klebanoff C.-A., Lal A., Finkel T., Restifo N.-P., Gattinoni L. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest., 2013, Vol. 123, no. 10, pp. 4479-4488.

102. Sukumar M., Liu J., Mehta G.U., Patel S.J., Roychoudhuri R., Crompton J.G., Klebanoff C.-A., Ji Y., Li P., Yu Z., Whitehill G.-D., Clever D., Eil R.-L., Palmer D.-C., Mitra S., Rao M., Keyvanfar K., Schrump D.-S., Wang E., Marincola F.-M., Gattinoni L., Leonard W.-J., Muranski P., Finkel T., Restifo N.-P. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab., 2016, Vol. 23, no. 1, pp. 63-76.

103. Sukumar M., Roychoudhuri R., Restifo N.P. Nutrient competition: a new axis of tumor immunosuppression. Cell, 2015, Vol. 162, no. 6, pp. 1206-1208.

104. Tang N., Cheng C., Zhang X., Qiao M., Li N., Mu W., Wei X.-F., Han W., Haoyi Wang H. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI insight, 2020, Vol. 5, no. 4, e133977. doi: 10.1172/jci.insight.133977.

105. Teijeira A., Labiano S., Garasa S., Etxeberria I., Santamaría E., Rouzaut A., Enamorado M., Azpilikueta A., Inoges S., Bolaños E., Aznar M.-A., Sánchez-Paulete A.-R., Sancho D., Melero I. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation4-1BB (CD137) and mitochondria. Cancer Immunol. Res., 2018, Vol. 6, no. 7, pp. 798-811.

106. Tokarew N., Ogonek J., Endres S., von Bergwelt-Baildon M., Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br. J. Cancer, 2019, Vol. 120, no. 1, pp. 26-37.

107. Tsurutani N., Mittal P., Rose M.-C.S., Ngoi S.M., Svedova J., Menoret A., Treadway F.-B., Laubenbacher R., Suárez-Ramírez J.-E., Cauley L.-S., Adler A.-J.,Vella A.-T. Costimulation endows immunotherapeutic CD8 T cells with IL-36 responsiveness during aerobic glycolysis. J. Immunol., 2016, Vol. 196, no. 1, pp. 124-134.

108. van der Windt G.J., Everts B., Chang C.-H., Curtis J.-D., Tori C., Freitas T.-C., Amiel E., Pearce E.-I., Pearce E.-L. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 2012, Vol. 36, no. 1, pp. 68-78.

109. van der Windt G.J., O’Sullivan D., Everts B., Huang S.C.-C., Buck M.D., Curtis J.D., Chang C.-H., Smith A.-M., Ai T., Faubert B., Jones R.-G., Pearce E.-J., Pearce E.-L. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA, 2013, Vol. 110, no. 35, pp. 14336-14341.

110. Wan H., Xu B., Zhu N., Ren B. PGC-1α activator–induced fatty acid oxidation in tumor-infiltrating CTLs enhances effects of PD-1 blockade therapy in lung cancer. Tumori, 2020, Vol. 106, no. 1, pp. 55-63.

111. Wei F., Wang D., Wei J., Tang N., Tang L., Xiong F., Guo C., Zhou M., Li X., Li G., Xiong W., Zhang S., Zeng Z. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell. Mol. Life Sci., 2021, Vol. 78, no. 1, pp. 173-193.

112. Weinkove R., George P., Dasyam N., McLellan A.D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunology, 2019, Vol. 8, no. 5, e1049. doi: 10.1002/cti2.1049.

113. Wu Y., Deng Z., Tang Y., Zhang S., Zhang Y.-Q. Over-expressing Akt in T cells to resist tumor immunosuppression and increase anti-tumor activity. BMC Cancer, 2015, Vol. 15, no. 1, pp. 1-10.

114. Xiao C., Tian H., Zheng Y., Yang Z., Li S., Fan T., Xu J., Bai J., Liu J., Deng Z., Li C., He J. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front. Cell. Dev. Biol., 2022, Vol. 10, 1013885. doi: 10.3389/fcell.2022.1013885.

115. Xu X., Gnanaprakasam J., Sherman J., Wang R. A metabolism toolbox for CAR T therapy. Front. Oncol., 2019, Vol. 9:322.

116. Xu L., Fukumura D., Jain R.K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J. Biol. Chem., 2002, Vol. 277, no. 13, pp. 11368-11374.

117. Xu X., Gnanaprakasam J.R., Sherman J., Wang R. A metabolism toolbox for CAR T therapy. Front. Oncol., 2019, Vol. 9, 322. doi: 10.3389/fonc.2019.00322.

118. Yang Q., Hao J., Chi M., Wang Y., Xin B., Huang J., Lu J., Li J., Sun X., Li C., Huo H., Zhang J., Han Y., Guo C. Superior antitumor immunotherapy efficacy of kynureninase modified CAR-T cells through targeting kynurenine metabolism. Oncoimmunology, 2022, Vol. 11, no. 1, 2055703. doi: 10.1080/2162402X.2022.2055703.

119. Yang W., Bai Y., Xiong Y., Zhang J., Chen S., Zheng X., Meng X., Lunyi Li L., Wang J., Xu C., Yan C., Wang L., Chang C.-C.Y., Chang T.-Y., Zhang T., Zhou P., Song B.-L., Liu W., Sun S.-C., Liu X., Li B.-I., Xu C. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature, 2016, Vol. 531, no. 7596, pp. 651-655.

120. Ye L., Park J.J., Peng L., Yang Q., Chow R.D., Dong M.B., Lam S.-Z., Guo J., Tang E., Zhang Y., Wang G., Dai X., Du Y., Kim H.-R., Cao H., Errami Y., Clark P., Bersenev A., Montgomery R.-R., Chen S. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab., 2022, Vol. 34, no. 4, pp. 595-614.e14.

121. Yu W., Lei Q., Yang L., Qin G., Liu S., Wang D., Ping Y., Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol., 2021, Vol. 14, no. 1, pp. 1-19.

122. Zeng H., Cohen S., Guy C., Shrestha S., Neale G., Brown S.A., Caryn Cloer C., Kishton R.-J., Gao X., Youngblood B., Do M., Li M.-O., Locasale J.-W., Rathmell J.-C., Chi H. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity, 2016, Vol. 45, no. 3, pp. 540-554.

123. Zhang L., Li W. Rewiring mitochondrial metabolism for CD8+ T cell memory formation and effective cancer immunotherapy. Front. Immunol., 2020, Vol. 11, 1834. doi: 10.3389/fimmu.2020.01834.

124. Zhang M., Jin X., Sun R., Xiong X., Wang J., Xie D., Zhao M.-F. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J. Transl. Med., 2021, Vol. 19, no. 1, pp. 1-11.

125. Zhang Q., Ding J., Sun S., Liu H., Lu M., Wei X., Gao X., Zhang X., Fu Q., Zheng Z. Akt inhibition at the initial stage of CAR-T preparation enhances the CAR-positive expression rate, memory phenotype and in vivo efficacy. Am. J. Cancer Res., 2019, Vol. 9, no. 11, 2379-2396.

126. Zhang T., Zhang Z., Li F., Ping Y., Qin G., Zhang C., Zhang Y. miR-143 regulates memory T cell differentiation by reprogramming T Cell Metab. J. Immunol., 2018, Vol. 201, no. 7, pp. 2165-2175.

127. Zhang Z., Zhang C., Li F., Zhang B., Zhang Y. Regulation of memory CD8+ T cell differentiation by microRNAs. Cell. Physiol. Biochem., 2018, Vol. 47, no. 6, pp. 2187-2198.

128. Zheng W., O’Hear C.E., Alli R., Basham J.H., Abdelsamed H.A., Palmer L.E., Jones L.-L., Youngblood B., Geiger T.-L. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 2018, Vol. 32, no. 5, pp. 1157-1167.

129. Zheng W., O’Hear C.E., Alli R., Basham J.H., Abdelsamed H.A., Palmer L.E., Jones L.-L., Youngblood B., Geiger T.-L. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 2018, Vol. 32, no. 5, pp. 1157-1167.


Supplementary files

Review

For citations:


Hatami Sh., Kazemi F., Doroudgar P., Shomeil Shushtari S., Atashzar M. CAR T cells and metabolic programming: A review. Medical Immunology (Russia). 2025;27(4):723-738. https://doi.org/10.15789/1563-0625-CTC-3155

Views: 78


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)