Preview

Medical Immunology (Russia)

Advanced search

TARGETING GROUP A STREPTOCOCCUS WITH A RECOMBINANT CHIMERIC VACCINE: INTEGRATING SCPA AND SPEA FRAGMENTS

https://doi.org/10.15789/1563-0625-TGA-3138

Abstract

Abstract

Objective: To develop a vaccine against group A streptococci (Streptococcus pyogenes, GAS), the causative agent of a broad spectrum of infections with varying severity.

Methods: The expression vectors pET27 and pQE30 were utilized to clone genes encoding recombinant proteins, which were subsequently affinity-purified. Female mice were immunized subcutaneously twice with the purified polypeptides (20 μg/mouse) formulated with Alum adjuvant (2:1) at three-week intervals. Immune sera were analyzed using ELISA to evaluate antigen-specific responses. Three weeks after the final immunization, mice were challenged intraperitoneally with GAS M1 serotype at a dose of 5x10^7 CFU/mouse.  Vaccination efficacy was determined by comparing bacterial clearance in vaccinated versus control animals, assessed by bacterial loads in the spleen at 3 and 15 hours post-infection.

Results: The vaccine candidate is a hybrid recombinant protein comprising fragments from two essential GAS virulence factors: C5a peptidase (ScpA) and SpeA exotoxin. T- and B-cell epitopes from conserved regions, common across multiple GAS serotypes, were identified and included in the construct using bioinformatics tools.

The integration of these epitopes is designed to confer broad-spectrum protection against GAS strains carrying exotoxin, particularly those linked to invasive infections. Immunogenicity studies in mice revealed a robust humoral immune response targeting both components of the hybrid protein. Further evaluation of protective efficacy demonstrated accelerated bacterial clearance in vaccinated animals, with the SpeA fragment playing a significant protective role.

Conclusion: These findings underscore the potential of this recombinant chimeric vaccine as a promising candidate for the prevention of group A streptococcal infections, addressing the critical need for effective prophylactic strategies against GAS-associated diseases.

About the Authors

Nadezhda Vladlenovna Duplik
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia
Russian Federation

PhD, research fellow of Molecular Microbiology Department



Galina Fedorovna Leontieva
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia
Russian Federation

PhD, leading researcher of Molecular Microbiology Department



Tatiana Anatolievna Kramskaya
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

PhD, senior researcher of Molecular Microbiology Department



Kseniya Petrovna Bogatireva
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

junior researcher of Molecular Microbiology Department



Tatiana Vitalievna Gupalova
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

PhD, Dr.  Biol.  Sci., leading researcher of Molecular Microbiology Department



Elena Alekseevna Bormotova
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

research fellow of Molecular Microbiology Department



Irina Vladimirovna Koroleva
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

PhD, senior researcher of Molecular Microbiology Department



Alexander Nikolaevich Suvorov
Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint-Petersburg, Russia

PhD, Dr.  Med.  Sci., professor, Corresponding Member of the Russian Academy of Sciences, Нead of Molecular Microbiology Department



References

1. Moreira M, Ferreira PR, Sarmento A, Cardoso AL. Bacterial Tracheitis: A New Presentation of a Well-Known Disease. Cureus. 2024 Jul 2;16(7):e63697. [doi: 10.7759/cureus.63697]. PMID: 39092363; PMCID: PMC11293875

2. Oliver-Gutierrez D, van der Veen RLP, Ros-Sánchez E, Segura-Duch G, Alonso T, Herranz-Cabarcos A, Matas J, Castro Seco R, Arcediano MÁ, Zapata MÁ, Oliveres J. Periorbital necrotizing fasciitis: clinical perspectives on nine cases. Eur J Clin Microbiol Infect Dis. 2024 Jul 31. doi: 10.1007/s10096-024-04908-6. Epub ahead of print. PMID: 39085512.

3. Martín-Delgado MC, De Lucas Ramos P, García-Botella A, Cantón R, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Burillo A, Muñoz P, Calvo Rey C, Catalán-González M, Cendejas-Bueno E, Halperin-Benito V, Recio R, Viñuela-Benítez C, Bouza E. Invasive group A Streptococcus infection (Streptococcus pyogenes): Current situation in Spain. Rev Esp Quimioter. 2024 Jul 30:martin30jul2024. [doi: 10.37201/req/067.2024]. Epub ahead of print. PMID: 39076142.

4. Schalk E, Genseke S, Zautner AE, Kaasch AJ. Detection of Streptococcus pyogenes in an atypical hematological diagnostic case. Infection. 2024 Jul 25. [doi: 10.1007/s15010-024-02335-5]. Epub ahead of print. PMID: 39060909

5. World Health Organization. The Current Evidence for the Burden of Group A Streptococcal Diseases; WHO: Geneva, Switzerland, 2005; pp. 1–52

6. Zachariadou, L.; Papaparaskevas, J.; Paraskakis, I.; Efstratiou, A.; Pangalis, A.; Legakis, N.J.; Tassios, P.T. Predominance of two M-types among erythromycin-resistant Group A Streptococci from Greek children. Clin. Microbiol. Infect. 2003, 9, 310–314

7. Cornaglia, G.; Ligozzi, M.; Mazzariol, A.; Valentini, M.; Orefici, G.; Fontana, R. Rapid increase of resistance to erythromycin and clindamycin in Streptococcus pyogenes in Italy, 1993–1995. The Italian surveillance group for antimicrobial resistance. Emerg. Infect. Dis. 1996, 2, 339–342

8. Desjardins, M.; Delgaty, K.L.; Ramotar, K.; Seetaram, C.; Toye, B. Prevalence and mechanisms of erythromycin resistance in Group A and Group B Streptococcus: Implications for reporting susceptibility results. J. Clin. Microbiol. 2004, 42, 5620–5623.

9. Lapthorne S, McWade R, Scanlon N, Ní Bhaoill S, Page A, O'Donnell C, Dornikova G, Hannan M, Lynch B, Lynch M, Brady D. Rising clindamycin resistance in group A Streptococcus in an Irish healthcare institution. Access Microbiol. 2024 Jun 27;6(6):000772.v4. [doi: 10.1099/acmi.0.000772.v4]. PMID: 39045238; PMCID: PMC11261709.

10. Rampersadh K, Engel KC, Engel ME, Moodley C. A survey of antibiotic resistance patterns among Group A Streptococcus isolated from invasive and non-invasive infections in Cape Town, South Africa. Heliyon. 2024 Jun 26;10(13):e33694. [doi: 10.1016/j.heliyon.2024.e33694]. PMID: 39040411; PMCID: PMC11261099.

11. Nixon J, Hennessy J, Baird RW. Tracking trends in the Top End: clindamycin and erythromycin resistance in Group A Streptococcus in the Northern Territory, 2012-2023. Commun Dis Intell (2018). 2024 Jul 17;48. [doi: 10.33321/cdi.2024.48.31]. PMID: 39021124.

12. Fulurija A, Cunningham MW, Korotkova N, Masterson MY, Bansal GP, Baker MG, Cannon JW, Carapetis JR, Steer AC. Research opportunities for the primordial prevention of rheumatic fever and rheumatic heart disease-streptococcal vaccine development: a national heart, lung and blood institute workshop report. BMJ Glob Health. 2023 Dec 12;8(Suppl 9):e013534. [doi: 10.1136/bmjgh-2023-013534]. PMID: 38164699; PMCID: PMC10729269.

13. Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. Lancet Microbe. 2024 Feb;5(2):e181-e193. [doi: 10.1016/S2666-5247(23)00318-X]. Epub 2023 Dec 6. PMID: 38070538

14. Nasr-Eldahan S, Attia Shreadah M, Maher AM, El-Sayed Ali T, Nabil-Adam A. New vaccination approach using formalin-killed Streptococcus pyogenes vaccine on the liver of Oreochromis niloticus fingerlings. Sci Rep. 2024 Aug 7;14(1):18341. [doi: 10.1038/s41598-024-67198-0]. PMID: 39112606.

15. Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One. 2017 Mar 29;12(3):e0174464. [doi: 10.1371/journal.pone.0174464]. PMID: 28355251; PMCID: PMC5371370.

16. Pastural É, McNeil SA, MacKinnon-Cameron D, Ye L, Langley JM, Stewart R, Martin LH, Hurley GJ, Salehi S, Penfound TA, Halperin S, Dale JB. Safety and immunogenicity of a 30-valent M protein-based group a streptococcal vaccine in healthy adult volunteers: A randomized, controlled phase I study. Vaccine. 2020 Feb 5;38(6):1384-1392. [doi: 10.1016/j.vaccine.2019.12.005]. Epub 2019 Dec 13. PMID: 31843270

17. Wang J, Ma C, Li M, Gao X, Wu H, Dong W, Wei L. Streptococcus pyogenes: Pathogenesis and the Current Status of Vaccines. Vaccines (Basel). 2023 Sep 21;11(9):1510. [doi: 10.3390/vaccines11091510]. PMID: 37766186; PMCID: PMC10534548.

18. Walkinshaw DR, Wright MEE, Mullin AE, Excler JL, Kim JH, Steer AC. The Streptococcus pyogenes vaccine landscape. NPJ Vaccines. 2023 Feb 14;8(1):16. [doi: 10.1038/s41541-023-00609-x]. PMID: 36788225; PMCID: PMC9925938

19. McCabe S, Bjånes E, Hendriks A, Wang Z, van Sorge NM, Pill-Pepe L, Bautista L, Chu E, Codée JDC, Fairman J, Kapoor N, Uchiyama S, Nizet V. The Group A Streptococcal Vaccine Candidate VAX-A1 Protects against Group B Streptococcus Infection via Cross-Reactive IgG Targeting Virulence Factor C5a Peptidase. Vaccines (Basel). 2023 Dec 3;11(12):1811. [doi: 10.3390/vaccines11121811]. PMID: 38140215; PMCID: PMC10747066.

20. Thomas S, Abraham A. Progress in the Development of Structure-Based Vaccines. Methods Mol Biol. 2022;2412:15-33. [doi: 10.1007/978-1-0716-1892-9_2]. PMID: 34918239.

21. Gupalova T, Leontieva G, Kramskaya T, Grabovskaya K, Bormotova E, Korjevski D, Suvorov A. Development of experimental GBS vaccine for mucosal immunization. PLoS One. 2018 May 4;13(5):e0196564. [doi: 10.1371/journal.pone.0196564]. Erratum in: PLoS One. 2018 Jun 1;13(6):e0198577. PMID: 29727446; PMCID: PMC5935385

22. blast.ncbi.nlm.nih.gov [Internet]. Rockville Pike: BLAST: Basic Local Alignment Search Tool. Available from: https://blast.ncbi.nlm.nih.gov/

23. ncbi.nlm.nih.gov [Internet]. Rockville Pike: National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/protein/

24. J Bacteriol. 2000 Jun; 182(11): 3254–3258. [doi: 10.1128/jb.182.11.3254-3258.2000].

25. Baker M, Gutman DM, Papageorgiou AC, Collins CM, Acharya KR. Structural features of a zinc binding site in the superantigen streptococcal pyrogenic exotoxin A (SpeA1): implications for MHC class II recognition. Protein Sci. 2001 Jun;10(6):1268-73. [doi: 10.1110/ps.330101]. PMID: 11369867

26. Rivera-Hernandez T, Rhyme MS, Cork AJ, Jones S, Segui-Perez C, Brunner L, Richter J, Petrovsky N, Lawrenz M, Goldblatt D, Collin N, Walker MJ. Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies. mBio. 2020 Mar 10;11(2):e00122-20. [doi: 10.1128/mBio.00122-20]. PMID: 32156809; PMCID: PMC7064752

27. Rivera-Hernandez T., Pandey M., Henningham A., Cole J., Choudhury B., Cork A.J., Gillen C.M., Ghaffar K.A., West N.P., Silvestri G., et al. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio. 2016;7:e00618-16. [doi: 10.1128/mBio.00618-16].

28. Reglinski M., Lynskey N.N., Choi Y.J., Edwards R.J., Sriskandan S. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG. J. Infect. 2016;72:450–459. [doi: 10.1016/j.jinf.2016.02.002].

29. Bi S., Xu M., Zhou Y., Xing X., Shen A., Wang B. A Multicomponent Vaccine Provides Immunity against Local and Systemic Infections by Group A Streptococcus across Serotypes. mBio. 2019;10:e02600-19. [doi: 10.1128/mBio.02600-19].

30. Gao N.J., Uchiyama S., Pill L., Dahesh S., Olson J., Bautista L., Maroju S., Berges A., Liu J.Z., Zurich R.H., et al. Site-Specific Conjugation of Cell Wall Polyrhamnose to Protein SpyAD Envisioning a Safe Universal Group A Streptococcal Vaccine. Infect. Microbes Dis. 2010;3:87–100. [doi: 10.1097/IM9.0000000000000044].

31. Panchaud A, Guy L, Collyn F, Haenni M, Nakata M, Podbielski A, Moreillon P, Roten CA. M-protein and other intrinsic virulence factors of Streptococcus pyogenes are encoded on an ancient pathogenicity island. BMC Genomics. 2009 Apr 27;10:198. [doi: 10.1186/1471-2164-10-198]. PMID: 19397826; PMCID: PMC2683870.

32. Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel). 2023 Dec 8;11(12):1828. [doi: 10.3390/vaccines11121828]. PMID: 38140232; PMCID: PMC10747103.

33. Aranha MP, Penfound TA, Salehi S, Botteaux A, Smeesters P, Dale JB, Smith JC. Design of Broadly Cross-Reactive M Protein-Based Group A Streptococcal Vaccines. J Immunol. 2021 Aug 15;207(4):1138-1149. [doi: 10.4049/jimmunol.2100286]. Epub 2021 Aug 2. PMID: 34341168; PMCID: PMC8355175

34. McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun. 2022;14(2):69-88. [doi: 10.1159/000516956]. Epub 2021 Oct 14. PMID: 34649250; PMCID: PMC9082167.

35. Lynskey NN, Reglinski M, Calay D, Siggins MK, Mason JC, Botto M, Sriskandan S. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog. 2017 Aug 14;13(8):e1006493. [doi: 10.1371/journal.ppat.1006493]. PMID: 28806402; PMCID: PMC5555575.

36. Mascini E.M., Jansze M., Schellekens J.F.P., Musser J.M., Faber J.A.J., Verhoef-Verhage L.A.E., Schouls L., van Leeuwen W.J., Verhoef J., van Dijk H. Invasive group A streptococcal disease in the Netherlands: Evidence for a protective role of anti-exotoxin A antibodies. J. Infect. Dis. 2000;181:631–638. [doi: 10.1086/315222].

37. Müller-Alouf H., Geoffroy C., Geslin P., Bouvet A., Felten A., Günther E., Ozegowski J.H., Alouf J.E. Streptococcal pyrogenic exotoxin A, streptolysin O, exoenzymes, serotype and biotype profiles of Streptococcus pyogenes isolates from patients with toxic shock syndrome and other severe infections. Zentralbl Bakteriol. 1997;286:421–433. [doi: 10.1016/S0934-8840(97)80102-8].

38. Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel). 2019 Jul 1;7(3):58. [doi: 10.3390/vaccines7030058]. PMID: 31266253; PMCID: PMC6789462

39. Monteiro RC, Van De Winkel JG. IgA Fc receptors. Annu Rev Immunol. 2003;21:177-204. [doi: 10.1146/annurev.immunol.21.120601.141011]. Epub 2001 Dec 19. PMID: 12524384.

40. Bi S, Xu M, Zhou Y, Xing X, Shen A, Wang B. A Multicomponent Vaccine Provides Immunity against Local and Systemic Infections by Group A Streptococcus across Serotypes. mBio. 2019 Nov 26;10(6):e02600-19. [doi: 10.1128/mBio.02600-19]. PMID: 31772056; PMCID: PMC6879722.

41. Cheng Q, Carlson B, Pillai S, Eby R, Edwards L, Olmsted SB, Cleary P. Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B streptococci. Infect Immun. 2001 Apr;69(4):2302-8. [doi: 10.1128/IAI.69.4.2302-2308.2001]. PMID: 11254587; PMCID: PMC98159.

42. Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol. 2018 Apr 5;9:602. [doi: 10.3389/fimmu.2018.00602]. PMID: 29686667; PMCID: PMC5900788.

43. Kaul R, et al. The Canadian Streptococcal Study Group Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome: A comparative observational study. Clin Infect Dis. 1999;28:800–807.

44. Linnér A, Darenberg J, Sjölin J, Henriques-Normark B, Norrby-Teglund A. Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: A comparative observational study. Clin Infect Dis. 2014;59:851–857.

45. Zeppa JJ, Kasper KJ, Mohorovic I, Mazzuca DM, Haeryfar SMM, McCormick JK. Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10226-10231. [doi: 10.1073/pnas.1700858114]. Epub 2017 Aug 9. PMID: 28794279; PMCID: PMC5617250

46. Ulrich RG. Vaccine based on a ubiquitous cysteinyl protease and streptococcal pyrogenic exotoxin A protects against Streptococcus pyogenes sepsis and toxic shock. J Immune Based Ther Vaccines. 2008 Oct 31;6:8. [doi: 10.1186/1476-8518-6-8]. PMID: 18976486; PMCID: PMC2585077

47. Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel). 2023 Sep 20;11(9):1504. [doi: 10.3390/vaccines1109150].

48. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013 Jul;26(3):422-47. [doi: 10.1128/CMR.00104-12]. PMID: 23824366; PMCID: PMC3719495.


Supplementary files

1. 3138
Subject
Type Other
Download (3MB)    
Indexing metadata ▾

Review

For citations:


Duplik N.V., Leontieva G.F., Kramskaya T.A., Bogatireva K.P., Gupalova T.V., Bormotova E.A., Koroleva I.V., Suvorov A.N. TARGETING GROUP A STREPTOCOCCUS WITH A RECOMBINANT CHIMERIC VACCINE: INTEGRATING SCPA AND SPEA FRAGMENTS. Medical Immunology (Russia). https://doi.org/10.15789/1563-0625-TGA-3138

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)