Metabolic reprogramming of microglia and astrocytes is a regulatory factor of neuroinflammation in ischemic stroke
https://doi.org/10.15789/1563-0625-MRO-3131
Abstract
Ischemic stroke is one of the most common diseases worldwide, with a high incidence and mortality rate. In the pathological process of ischemia of nervous tissue, neuroinflammation is an important factor that determines the functional prognosis of the outcome of the disease. During the formation of an ischemic focus, microglial cells and astrocytes are activated, which leads to the launch of a cascade of neuroinflammatory reactions that play an important role in the pathophysiology of ischemic stroke. Activated microglial cells and astrocytes are able to form a variety of phenotypes depending on the corresponding parameters of the microenvironment. These phenotypes can have both neurotoxic and neuroprotective effects. On the one hand, when nerve tissue is damaged, glial cells contribute to the removal of cellular debris, maintain ionic homeostasis, regulate the extracellular content of neurotransmitters and ensure the trophism of neurons. On the other hand, microglia and astrocytes can acquire a pro-inflammatory phenotype characterized by the secretion of inflammatory cytokines, which contributes to the progression of neuroinflammation and tissue damage. Thus, astrocytes and microglia undergo both morphological and functional rearrangements, thereby actively participating in neuroinflammation due to the release of pro-inflammatory or anti-inflammatory factors. It is important to note that these rearrangements are associated with metabolic reprogramming, which leads to a change in the activity of metabolic pathways to compensate for the lack of energy and building materials caused by impaired cerebral blood flow. The pro-inflammatory phenotype of microglia is characterized by activation of glycolysis, the pentose phosphate pathway, synthesis of fatty acids and glutamine, whereas the anti-inflammatory phenotype demonstrates increased oxidative phosphorylation and oxidation of fatty acids. Reactive astrocytes are characterized by increased glycolysis, glycogenolysis and reduced glutamate uptake. Recently, there has been increasing evidence that manipulation of glial cell homeostasis can be used to switch from a neurotoxic phenotype to a neuroprotective one. A comprehensive understanding of the basic mechanisms of switching metabolic phenotypes can potentially allow targeted reprogramming of glial cells during the pathological process, which can be used in therapeutic approaches for the treatment of the consequences of ischemic stroke. This review presents current ideas about metabolic reprogramming in astrocytes and microglial cells in the context of pathophysiological processes in cerebral ischemia.
Keywords
About the Authors
M. Yu. BobrovRussian Federation
PhD (Chemistry), Leading Researcher, Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Science
V. S. Nikitin
Russian Federation
Laboratory Researcher, Master Student, Sirius University, Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Science
M. Yu. Burak
Russian Federation
Laboratory Researcher, Master Student, Department of Immunobiology and Biomedicine, Scientific Center of Genetics and Life Science
References
1. Aizawa F., Nishinaka T., Yamashita T., Nakamoto K., et al. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli. Biol. Pharm. Bull., 2016, Vol. 39, no. 7, pp. 1100–1106. - http://doi.org/10.1248/bpb.b15-01037
2. Anderson, C.M., Bridges R.J., Chamberlin A.R., Shimamoto K., et al. Differing effects of substrate and non‐substrate transport inhibitors on glutamate uptake reversal. J. Neurochem., 2001, Vol. 79, no. 6, pp. 1207–1216. - https://doi.org/10.1046/j.1471-4159.2001.00668.x
3. Baik S.H., Kang S., Lee W., Choi H., et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab., 2019, Vol. 30, no. 3, pp. 493-507.e6. - http://doi.org/10.1016/j.cmet.2019.06.005
4. Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA‐glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, Vol. 98, no. 3, pp. 641–653. - http://doi.org/10.1111/j.1471-4159.2006.03913.x
5. Bak L.K., Walls A.B., Schousboe A., Waagepetersen H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, Vol. 293, no. 19, pp. 7108–7116. - http://doi.org/10.1074/jbc.R117.803239
6. Bernier L.-P., York E.M., Kamyabi A., Choi H.B., et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, Vol. 11, no. 1, p. 1559. - http://doi.org/10.1038/s41467-020-15267-z
7. Bolanos J., Garcia-Nogales P., Almeida A. Provoking Neuroprotection by Peroxynitrite. Curr. Pharm. Des., 2004, Vol. 10, no. 8, pp. 867–877. - http://doi.org/10.2174/1381612043452910
8. Borbor M., Yin D., Brockmeier U., Wang C., et al. Neurotoxicity of ischemic astrocytes involves STAT3 - mediated metabolic switching and depends on glycogen usage. Glia, 2023, Vol. 71, no. 6, pp. 1553–1569. - http://doi.org/10.1002/glia.24357
9. Bröer A., Albers A., Setiawan I., Edwards R.H., et al. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, Vol. 539, no. 1, pp. 3–14. - http://doi.org/10.1113/jphysiol.2001.013303
10. Bröer S., Brookes N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, Vol. 77, no. 3, pp. 705–719. - http://doi.org/10.1046/j.1471-4159.2001.00322.x
11. Brown A.M., Ransom B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, Vol. 55, no. 12, pp. 1263–1271. - http://doi.org/10.1002/glia.20557
12. Brown A.M., Sickmann H.M., Fosgerau K., Lund T.M., et al. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, Vol. 79, no. 1–2, pp. 74–80. - http://doi.org/10.1002/jnr.20335
13. Bruce K.D., Gorkhali S., Given K., Coates A.M., et al. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Front. Mol. Neurosci., 2018, Vol. 11. - http://doi.org/10.3389/fnmol.2018.00057
14. Button E.B., Mitchell A.S., Domingos M.M., Chung J.H. ‐J., et al. Microglial Cell Activation Increases Saturated and Decreases Monounsaturated Fatty Acid Content, but Both Lipid Species are Proinflammatory. Lipids, 2014, Vol. 49, no. 4, pp. 305–316. - https://doi.org/10.1007/s11745-014-3882-y
15. Cai Y., Guo H., Fan Z., Zhang X., et al. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience, 2020, Vol. 23, no. 5, p. 101136. - https://doi.org/10.1016/j.isci.2020.101136
16. Candelario-Jalil E., Dijkhuizen R.M., Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 2022, Vol. 53, no. 5, pp. 1473–1486. - https://doi.org/10.1161/STROKEAHA.122.036946.
17. Chang J., Qian Z., Wang B., Cao J., et al. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun. Signal., 2023, Vol. 21, no. 1, p. 37. - https:// doi.org/10.1186/s12964-022-01036-6.
18. Chang P.K.-Y., Khatchadourian A., McKinney R.A., Maysinger D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, Vol. 12, no. 1, p. 34. - http://doi.org/10.1186/s12974-015-0244-5
19. Chen J., Zhang D.-M., Feng X., Wang J., et al. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, Vol. 131 pp. 377–388. - http://doi.org/10.1016/j.neuropharm.2018.01.012
20. Chen S.-F., Pan M.-X., Tang J.-C., Cheng J., et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, Vol. 13, no. 1, p. 63. - http://doi.org/10.1186/s13041-020-00601-9
21. Chen S., Dong Z., Cheng M., Zhao Y., et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, Vol. 14, no. 1, p. 187. - http://doi.org/10.1186/s12974-017-0963-x
22. Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science (80-. )., 2014, Vol. 345, no. 6204,. - http://doi.org/10.1126/science.1250684
23. Cheng X., Yang Y.-L., Li W.-H., Liu M., et al. Dynamic Alterations of Brain Injury, Functional Recovery, and Metabolites Profile after Cerebral Ischemia/Reperfusion in Rats Contributes to Potential Biomarkers. J. Mol. Neurosci., 2020, Vol. 70, no. 5, pp. 667–676. - http://doi.org/10.1007/s12031-019-01474-x
24. Cherry J.D., Olschowka J.A., O’Banion M.K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation, 2014, Vol. 11, no. 1, p. 98. - https://doi.org/10.1186/1742-2094-11-98
25. Chu K., Lee S.-T., Sinn D.-I., Ko S.-Y., et al. Pharmacological Induction of Ischemic Tolerance by Glutamate Transporter-1 (EAAT2) Upregulation. Stroke, 2007, Vol. 38, no. 1, pp. 177–182. - http://doi.org/10.1161/01.STR.0000252091.36912.65
26. Clausen B.H., Lambertsen K.L., Dagnæs-Hansen F., Babcock A.A., et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol., 2016, Vol. 131, no. 5, pp. 775–791. - https://doi.org/10.1007/s00401-016-1541-5.
27. De Simone R., Vissicchio F., Mingarelli C., De Nuccio C., et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta - Mol. Basis Dis., 2013, Vol. 1832, no. 5, pp. 650–659. - http://doi.org/10.1016/j.bbadis.2013.02.001
28. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, Vol. 8, no. 9, pp. 705–713. - http://doi.org/10.1038/nrc2468
29. Dodson M., de la Vega M.R., Cholanians A.B., Schmidlin C.J., et al. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol., 2019, Vol. 59, no. 1, pp. 555–575. - http://doi.org/10.1146/annurev-pharmtox-010818-021856
30. dos Santos I.C., Dias M.C., Gomes-Leal W. Microglial activation and adult neurogenesis after brain stroke. Neural Regen. Res., 2021, Vol. 16, no. 3, p. 456. - https://doi.org/10.4103/1673-5374.291383.
31. Duffy C.M., Xu H., Nixon J.P., Bernlohr D.A., et al. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, Vol. 80 pp. 52–57. - http://doi.org/10.1016/j.mcn.2017.02.004
32. Duffy C.M., Yuan C., Wisdorf L.E., Billington C.J., et al. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, Vol. 606 pp. 140–144. - http://doi.org/10.1016/j.neulet.2015.08.033
33. Dwivedi D., Megha K., Mishra R., Mandal P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res., 2020, Vol. 45, no. 7, pp. 1461–1480. - http://doi.org/10.1007/s11064-020-03030-1
34. Ebert D., Haller R.G., Walton M.E. Energy Contribution of Octanoate to Intact Rat Brain Metabolism Measured by 13 C Nuclear Magnetic Resonance Spectroscopy. J. Neurosci., 2003, Vol. 23, no. 13, pp. 5928–5935. - http://doi.org/10.1523/JNEUROSCI.23-13-05928.2003
35. Ebrahimi M., Yamamoto Y., Sharifi K., Kida H., et al. Astrocyte‐expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons. Glia, 2016, Vol. 64, no. 1, pp. 48–62. - https://doi.org/10.1002/glia.22902
36. Escartin C., Galea E., Lakatos A., O’Callaghan J.P., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci., 2021, Vol. 24, no. 3, pp. 312–325. - https://doi.org/10.1038/s41593-020-00783-4
37. Falkowska A., Gutowska I., Goschorska M., Nowacki P., et al. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci., 2015, Vol. 16, no. 11, pp. 25959–25981. - http://doi.org/10.3390/ijms161125939
38. Foster D.W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, Vol. 122, no. 6, pp. 1958–1959. - http://doi.org/10.1172/JCI63967
39. Gaber T., Strehl C., Buttgereit F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 5, pp. 267–279. - http://doi.org/10.1038/nrrheum.2017.37
40. Gao G., Li C., Zhu J., Wang Y., et al. Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. Front. Immunol., 2020, Vol. 11. - https://doi.org/10.3389/fimmu.2020.00161
41. Ghosh S., Castillo E., Frias E.S., Swanson R.A. Bioenergetic regulation of microglia. Glia, 2018, Vol. 66, no. 6, pp. 1200–1212. - http://doi.org/10.1002/glia.23271
42. Gill E.L., Raman S., Yost R.A., Garrett T.J., et al. l-Carnitine Inhibits Lipopolysaccharide-Induced Nitric Oxide Production of SIM-A9 Microglia Cells. ACS Chem. Neurosci., 2018, Vol. 9, no. 5, pp. 901–905. - https://doi.org/10.1021/acschemneuro.7b00468
43. Gimeno‐Bayón J., López‐López A., Rodríguez M.J., Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, Vol. 92, no. 6, pp. 723–731. - http://doi.org/10.1002/jnr.23356
44. Guo H., Fan Z., Wang S., Ma L., et al. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, Vol. 18, no. 1, p. 230. - http://doi.org/10.1186/s12974-021-02284-y
45. Hardie D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, Vol. 8, no. 10, pp. 774–785. - http://doi.org/10.1038/nrm2249
46. He C., Zhou C., Kennedy B.K. The yeast replicative aging model. Biochim. Biophys. Acta - Mol. Basis Dis., 2018, Vol. 1864, no. 9, pp. 2690–2696. - http://doi.org/10.1016/j.bbadis.2018.02.023
47. Holland R., McIntosh A.L., Finucane O.M., Mela V., et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain. Behav. Immun., 2018, Vol. 68 pp. 183–196. - http://doi.org/10.1016/j.bbi.2017.10.017
48. Hu J., Baydyuk M., Huang J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, Vol. 66 p. 102287. - https://doi.org/10.1016/j.coph.2022.102287
49. Hu X., Li P., Guo Y., Wang H., et al. Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, Vol. 43, no. 11, pp. 3063–3070. - http://doi.org/10.1161/STROKEAHA.112.659656
50. Hu Y., Mai W., Chen L., Cao K., et al. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, Vol. 68, no. 5, pp. 1031–1045. - http://doi.org/10.1002/glia.23760
51. Iizumi T., Takahashi S., Mashima K., Minami K., et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, Vol. 13, no. 1, p. 99. - http://doi.org/10.1186/s12974-016-0564-0
52. Infantino V., Convertini P., Cucci L., Panaro M.A., et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J., 2011, Vol. 438, no. 3, pp. 433–436. - http://doi.org/10.1042/BJ20111275
53. Ioannou M.S., Jackson J., Sheu S.-H., Chang C.-L., et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell, 2019, Vol. 177, no. 6, pp. 1522-1535.e14. - https://doi.org/10.1016/j.cell.2019.04.001
54. Jiang T., Luo J., Pan X., Zheng H., et al. Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci., 2021, Vol. 278 p. 119526. - https://doi.org/10.1016/j.lfs.2021.119526.
55. Jiang X., Pu H., Hu X., Wei Z., et al. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl. Stroke Res., 2016, Vol. 7, no. 6, pp. 548–561. - http://doi.org/10.1007/s12975-016-0502-6
56. Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J., et al. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, Vol. 17, no. 9, pp. 571–588. - http://doi.org/10.1016/j.jnutbio.2005.12.001
57. Jump D.B., Clarke S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, Vol. 19, no. 1, pp. 63–90. - http://doi.org/10.1146/annurev.nutr.19.1.63
58. Jurcau A., Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, p. 14. - https://doi.org/10.3390/ijms23010014.
59. Jurga A.M., Paleczna M., Kuter K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell. Neurosci., 2020, Vol. 14. - http://doi.org/10.3389/fncel.2020.00198
60. Kagawa Y., Yasumoto Y., Sharifi K., Ebrahimi M., et al. Fatty acid‐binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin‐1. Glia, 2015, Vol. 63, no. 5, pp. 780–794. - https://doi.org/10.1002/glia.22784
61. Kaushik D.K., Yong V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, Vol. 158, no. 1, pp. 14–24. - http://doi.org/10.1111/jnc.15206
62. Kelly B., O’Neill L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, Vol. 25, no. 7, pp. 771–784. - http://doi.org/10.1038/cr.2015.68
63. Killoy K.M., Harlan B.A., Pehar M., Vargas M.R. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia, 2020, Vol. 68, no. 12, pp. 2693–2704. - https://doi.org/10.1002/glia.23879
64. Klimaszewska‐Łata J., Gul‐Hinc S., Bielarczyk H., Ronowska A., et al. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J. Neurochem., 2015, Vol. 133, no. 2, pp. 284–297. - http://doi.org/10.1111/jnc.12979
65. Kofuji P., Araque A. Astrocytes and Behavior. Annu. Rev. Neurosci., 2021, Vol. 44, no. 1, pp. 49–67. - https://doi.org/10.1146/annurev-neuro-101920-112225
66. Kunze R., Urrutia A., Hoffmann A., Liu H., et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp. Neurol., 2015, Vol. 266 pp. 99–111. - http://doi.org/10.1016/j.expneurol.2015.02.022
67. Lai T.W., Zhang S., Wang Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, Vol. 115 pp. 157–188. - https://doi.org/10.1016/j.pneurobio.2013.11.006
68. Lambertsen K.L., Finsen B., Clausen B.H. Post-stroke inflammation—target or tool for therapy? Acta Neuropathol., 2019, Vol. 137, no. 5, pp. 693–714. - https://doi.org/10.1007/s00401-018-1930-z.
69. Lanza M., Casili G., Campolo M., Paterniti I., et al. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci., 2021, Vol. 11, no. 4, p. 466. - https://doi.org/10.3390/brainsci11040466.
70. Lauro C., Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front. Immunol., 2020, Vol. 11. - http://doi.org/10.3389/fimmu.2020.00493
71. Lee E.Y., Sidoryk M., Jiang H., Yin Z., et al. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, Vol. 110, no. 2, pp. 530–544. - http://doi.org/10.1111/j.1471-4159.2009.06105.x
72. Li B., Liu Y., Liu J., Sun H., et al. Cerebral multi-autoregulation model based enhanced external counterpulsation treatment planning for cerebral ischemic stroke. J. Cereb. Blood Flow Metab., 2023, Vol. 43, no. 10, pp. 1764–1778. - https://doi.org/10.1177/ 0271678X231179542.
73. Li H., Liu P., Zhang B., Yuan Z., et al. Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med., 2023, Vol. 15, no. 1, p. 109. - https://doi.org/10.1186/s13073-023-01257-5
74. Li J., Abedi V., Zand R. Dissecting Polygenic Etiology of Ischemic Stroke in the Era of Precision Medicine. J. Clin. Med., 2022, Vol. 11, no. 20, p. 5980. - https://doi.org/10.3390/ jcm11205980.
75. Li T., Chen X., Zhang C., Zhang Y., et al. An update on reactive astrocytes in chronic pain. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 140. - https://doi.org/10.1186/s12974- 019-1524-2.
76. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, Vol. 541, no. 7638, pp. 481–487. - https://doi.org/10.1038/nature21029.
77. Lin-Holderer J., Li L., Gruneberg D., Marti H.H., et al. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, Vol. 105 pp. 228–240. - http://doi.org/10.1016/j.neuropharm.2016.01.023
78. Liu M., Xu Z., Wang L., Zhang L., et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 270. - https://doi.org/10.1186/s12974-020-01946-7.
79. Liu R., Liao X.-Y., Pan M.-X., Tang J.-C., et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. J. Immunol., 2019, Vol. 202, no. 6, pp. 1704–1714. - http://doi.org/10.4049/jimmunol.1801166
80. Magistretti P.J., Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, Vol. 19, no. 4, pp. 235–249. - http://doi.org/10.1038/nrn.2018.19
81. Mantovani A., Biswas S.K., Galdiero M.R., Sica A., et al. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, Vol. 229, no. 2, pp. 176–185. - http://doi.org/10.1002/path.4133
82. Marcoux J., McArthur D.A., Miller C., Glenn T.C., et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury*. Crit. Care Med., 2008, Vol. 36, no. 10, pp. 2871–2877. - http://doi.org/10.1097/CCM.0b013e318186a4a0
83. Marinelli S., Marrone M.C., Di Domenico M., Marinelli S. Endocannabinoid signaling in microglia. Glia, 2023, Vol. 71, no. 1, pp. 71–90. - https://doi.org/10.1002/glia.24281
84. McIntosh A., Mela V., Harty C., Minogue A.M., et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, Vol. 29, no. 5, pp. 606–621. - http://doi.org/10.1111/bpa.12704
85. McKenna M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, Vol. 85, no. 15, pp. 3347–3358. - http://doi.org/10.1002/jnr.21444
86. McKenna M.C., Sonnewald U., Huang X., Stevenson J., et al. Exogenous Glutamate Concentration Regulates the Metabolic Fate of Glutamate in Astrocytes. J. Neurochem., 1996, Vol. 66, no. 1, pp. 386–393. - http://doi.org/10.1046/j.1471-4159.1996.66010386.x
87. Mehla K., Singh P.K. Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, Vol. 5, no. 12, pp. 822–834. - http://doi.org/10.1016/j.trecan.2019.10.007
88. Mela V., Mota B.C., Milner M., McGinley A., et al. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain. Behav. Immun., 2020, Vol. 87 pp. 413–428. - http://doi.org/10.1016/j.bbi.2020.01.012
89. Mills E.L., Kelly B., Logan A., Costa A.S.H., et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, Vol. 167, no. 2, pp. 457-470.e13. - http://doi.org/10.1016/j.cell.2016.08.064
90. Morizawa Y.M., Hirayama Y., Ohno N., Shibata S., et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, Vol. 8, no. 1, p. 28. - https://doi. org/10.1038/s41467-017-00037-1.
91. Munder M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol., 2009, Vol. 158, no. 3, pp. 638–651. - https://doi.org/10.1111/j.1476-5381.2009.00291.x
92. Muraoka T., Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem. Res., 2022, Vol. 47, no. 9, pp. 2488–2498. - https://doi.org/ 10.1007/s11064-022-03638-5.
93. Murphy-Royal C., Johnston A.D., Boyce A.K.J., Diaz-Castro B., et al. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat. Commun., 2020, Vol. 11, no. 1, p. 2014. - https://doi.org/10.1038/s41467-020-16668-w
94. Nadjar A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins, Leukot. Essent. Fat. Acids, 2018, Vol. 135 pp. 63–73. - http://doi.org/10.1016/j.plefa.2018.07.006
95. Nair S., Sobotka K.S., Joshi P., Gressens P., et al. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, Vol. 67, no. 6, pp. 1047–1061. - http://doi.org/10.1002/glia.23587
96. Nakajima K., Kanamatsu T., Koshimoto M., Kohsaka S. Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem. Int., 2017, Vol. 102 pp. 1–12. - https://doi.org/10.1016/j.neuint.2016.10.015
97. Olzmann J.A., Carvalho P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol., 2019, Vol. 20, no. 3, pp. 137–155. - https://doi.org/10.1038/s41580-018-0085-z
98. Orihuela R., McPherson C.A., Harry G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, Vol. 173, no. 4, pp. 649–665. - http://doi.org/10.1111/bph.13139
99. Owjfard M., Karimi F., Mallahzadeh A., Nabavizadeh S.A., et al. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, Vol. 101, no. 9, pp. 1433–1446. - http://doi.org/10.1002/jnr.25202
100. Palmieri E.M., Menga A., Lebrun A., Hooper D.C., et al. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells. Antioxid. Redox Signal., 2017, Vol. 26, no. 8, pp. 351–363. - https://doi.org/10.1089/ars.2016.6715
101. Palsson‐McDermott E.M., O’Neill L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, Vol. 35, no. 11, pp. 965–973. - http://doi.org/10.1002/bies.201300084
102. Patel M.R., Weaver A.M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep., 2021, Vol. 34, no. 10, p. 108829. - https://doi.org/10.1016/j.celrep.2021.108829
103. Pederson B.A. Structure and Regulation of Glycogen Synthase in the Brain 2019, pp. 83–123. - http://doi.org/10.1007/978-3-030-27480-1_3
104. Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, Vol. 91, no. 22, pp. 10625–10629. - http://doi.org/10.1073/pnas.91.22.10625
105. Peng L., Hu G., Yao Q., Wu J., et al. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol., 2022, Vol. 13. - https://doi.org/10.3389/fimmu.2022.1013311
106. Qiao H., He X., Zhang Q., Yuan H., et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, Vol. 129 pp. 601–607. - https://doi.org/10.1016/j.ijbiomac.2019.02.029
107. Ramagiri S., Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur. J. Pharmacol., 2017, Vol. 803 pp. 84–93. - http://doi.org/10.1016/j.ejphar.2017.03.028
108. Ransohoff R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, Vol. 19, no. 8, pp. 987–991. - https://doi.org/10.1038/nn.4338
109. Ros S., Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, Vol. 1, no. 1, p. 8. - http://doi.org/10.1186/2049-3002-1-8
110. Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, Vol. 10, no. 11, pp. 1377–1386. - http://doi.org/10.1038/nn2004
111. Rothstein J.D., Patel S., Regan M.R., Haenggeli C., et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, Vol. 433, no. 7021, pp. 73–77. - http://doi.org/10.1038/nature03180
112. Rubio-Araiz A., Finucane O.M., Keogh S., Lynch M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, Vol. 15, no. 1, p. 247. - http://doi.org/10.1186/s12974-018-1281-7
113. Sayre N.L., Sifuentes M., Holstein D., Cheng S., et al. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, Vol. 37, no. 2, pp. 514–527. - http://doi.org/10.1177/0271678X16629153
114. Schurr A., Payne R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, Vol. 147, no. 3, pp. 613–619. - http://doi.org/10.1016/j.neuroscience.2007.05.002
115. Schurr A., Payne R.S., Miller J.J., Rigor B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res., 1997, Vol. 744, no. 1, pp. 105–111. - http://doi.org/10.1016/S0006-8993(96)01106-7
116. Scuderi S.A., Ardizzone A., Paterniti I., Esposito E., et al. Antioxidant and Anti-inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants, 2020, Vol. 9, no. 7, p. 630. - http://doi.org/10.3390/antiox9070630
117. Shi K., Tian D.-C., Li Z.-G., Ducruet A.F., et al. Global brain inflammation in stroke. Lancet Neurol., 2019, Vol. 18, no. 11, pp. 1058–1066. - https://doi.org/10.1016/S1474-4422(19)30078-X.
118. Sofroniew M. V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol., 2020, Vol. 41, no. 9, pp. 758–770. - http://doi.org/10.1016/j.it.2020.07.004
119. Sofroniew M. V., Vinters H. V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, Vol. 119, no. 1, pp. 7–35. - http://doi.org/10.1007/s00401-009-0619-8
120. Subedi L., Yumnam S. Terpenoids from Abies holophylla Attenuate LPS-Induced Neuroinflammation in Microglial Cells by Suppressing the JNK-Related Signaling Pathway. Int. J. Mol. Sci., 2021, Vol. 22, no. 2, p. 965. - https://doi.org/10.3390/ijms22020965
121. Sun H.-N., Kim S.-U., Lee M.-S., Kim S.-K., et al. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase-Dependent Activation of Phosphoinositide 3-Kinase and p38 Mitogen-Activated Protein Kinase Signal Pathways Is Required for Lipopolysaccharide-Induced Microglial Phagocytosis. Biol. Pharm. Bull., 2008, Vol. 31, no. 9, pp. 1711–1715. - http://doi.org/10.1248/bpb.31.1711
122. Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, Vol. 40, no. 2, pp. 121–137. - http://doi.org/10.1111/neup.12639
123. Takahashi S. Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int. J. Mol. Sci., 2021, Vol. 22, no. 12, p. 6568. - http://doi.org/10.3390/ijms22126568
124. Takahashi S., Izawa Y., Suzuki N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, Vol. 52, no. 1, pp. 41–51. - http://doi.org/10.5692/clinicalneurol.52.41
125. Tan L.-L., Jiang X.-L., Xu L.-X., Li G., et al. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, Vol. 16, no. 6, p. 1037. - https://doi.org/10.4103/1673-5374.300453
126. Tang B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, Vol. 120, no. 9, pp. 14285–14295. - http://doi.org/10.1002/jcb.29004
127. Tani H., Dulla C.G., Farzampour Z., Taylor-Weiner A., et al. A Local Glutamate-Glutamine Cycle Sustains Synaptic Excitatory Transmitter Release. Neuron, 2014, Vol. 81, no. 4, pp. 888–900. - http://doi.org/10.1016/j.neuron.2013.12.026
128. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, Vol. 496, no. 7444, pp. 238–242. - http://doi.org/10.1038/nature11986
129. Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta - Bioenerg., 2016, Vol. 1857, no. 8, pp. 1086–1101. - http://doi.org/10.1016/j.bbabio.2016.03.012
130. Tu D., Gao Y., Yang R., Guan T., et al. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 255. - http://doi.org/10.1186/s12974-019-1659-1
131. Van den Bossche J., Baardman J., Otto N.A., van der Velden S., et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep., 2016, Vol. 17, no. 3, pp. 684–696. - http://doi.org/10.1016/j.celrep.2016.09.008
132. Vos T., Lim S.S., Abbafati C., Abbas K.M., et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, Vol. 396, no. 10258, pp. 1204–1222. - https://doi.org/10.1016/s0140-6736(20)30925-9
133. Wang D., Liu F., Zhu L., Lin P., et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 257. - https://doi.org/10.1186/s12974-020-01921-2
134. Wang F., Smith N.A., Xu Q., Fujita T., et al. Astrocytes Modulate Neural Network Activity by Ca 2+ -Dependent Uptake of Extracellular K +. Sci. Signal., 2012, Vol. 5, no. 218,. - https://doi.org/10.1126/scisignal.2002334
135. Wang J., Jiang P., Deng W., Sun Y., et al. Grafted human ESC-derived astroglia repair spinal cord injury via activation of host anti-inflammatory microglia in the lesion area. Theranostics, 2022, Vol. 12, no. 9, pp. 4288–4309. - https://doi.org/10.7150/ thno.70929.
136. Wang L., Pavlou S., Du X., Bhuckory M., et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, Vol. 14, no. 1, p. 2. - http://doi.org/10.1186/s13024-019-0305-9
137. Wang L., Yao Y., He R., Meng Y., et al. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic. Biol. Med., 2017, Vol. 103 pp. 69–86. - https://doi.org/10.1016/j. freeradbiomed.2016.12.014.
138. Wang Y., Leak R.K., Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front. Cell. Neurosci., 2022, Vol. 16. - https://doi.org/10.3389/fncel.2022.980722
139. Wang Z., Liu D., Wang F., Liu S., et al. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, Vol. 107, no. 2, pp. 229–241. - http://doi.org/10.1017/S0007114511002868
140. West A.P., Brodsky I.E., Rahner C., Woo D.K., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, Vol. 472, no. 7344, pp. 476–480. - http://doi.org/10.1038/nature09973
141. White C.J., Lee J., Choi J., Chu T., et al. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol. Cell. Biol., 2020, Vol. 40, no. 10,. - http://doi.org/10.1128/MCB.00037-20
142. Wiesinger H., Hamprecht B., Dringen R. Metabolic pathways for glucose in astrocytes. Glia, 1997, Vol. 21, no. 1, pp. 22–34. - http://doi.org/10.1002/(SICI)1098-1136(199709)21:1<22::AIDGLIA3> 3.0.CO;2-3
143. Wouters A., Nysten C., Thijs V., Lemmens R. Prediction of Outcome in Patients With Acute Ischemic Stroke Based on Initial Severity and Improvement in the First 24 h. Front. Neurol., 2018, Vol. 9. - https://doi.org/10.3389/fneur.2018.00308.
144. Xie L., Liu Y., Zhang N., Li C., et al. Electroacupuncture Improves M2 Microglia Polarization and Glia Anti-inflammation of Hippocampus in Alzheimer’s Disease. Front. Neurosci., 2021, Vol. 15. - https://doi.org/10.3389/fnins.2021.689629
145. Xie Y., Kuan A.T., Wang W., Herbert Z.T., et al. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep., 2022, Vol. 38, no. 8, p. 110416. - https://doi.org/ 10.1016/j.celrep.2022.110416.
146. Yalcin A., Clem B.F., Imbert-Fernandez Y., Ozcan S.C., et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, Vol. 5, no. 7, pp. e1337–e1337. - http://doi.org/10.1038/cddis.2014.292
147. Yamada T., Kawahara K., Kosugi T., Tanaka M. Nitric Oxide Produced During Sublethal Ischemia Is Crucial for the Preconditioning-Induced Down-Regulation of Glutamate Transporter GLT-1 in Neuron/Astrocyte Co-Cultures. Neurochem. Res., 2006, Vol. 31, no. 1, pp. 49–56. - http://doi.org/10.1007/s11064-005-9077-4
148. Yang X., Yu H., Li J., Li N., et al. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol. Neurobiol., 2024,. - https://doi.org/10.1007/s12035-024-04184-7
149. Yu Z., Su G., Zhang L., Liu G., et al. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER–ERK–NF-κB signaling pathway. Mol. Med., 2022, Vol. 28, no. 1, p. 142. - https://doi.org/10.1186/s10020-022-00573-7
150. Zendedel A., Habib P., Dang J., Lammerding L., et al. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, Vol. 278 pp. 200–211. - https://doi.org/10.1016/j.jneuroim.2014.11.007
151. Zhai L., Ruan S., Wang J., Guan Q., et al. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, Vol. 37, no. 5,. - http://doi.org/10.1002/jbt.23318
152. Zhang H.-Y., Wang Y., He Y., Wang T., et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 200. - https://doi.org/10.1186/s12974-020- 01871-9.
153. Zhang Y., Chen K., Sloan S.A., Bennett M.L., et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci., 2014, Vol. 34, no. 36, pp. 11929–11947. - http://doi.org/10.1523/JNEUROSCI.1860-14.2014
154. Zhang Y., Lian L., Fu R., Liu J., et al. Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Front. Cell. Neurosci., 2022, Vol. 16. - https://doi.org/10.3389/fncel.2022.889442
155. Zhao D., Chen J., Zhang Y., Liao H.-B., et al. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, Vol. 501, no. 1, pp. 85–91. - http://doi.org/10.1016/j.bbrc.2018.04.171
156. Zhao R., Ying M., Gu S., Yin W., et al. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience, 2019, Vol. 422 pp. 99–118. - https://doi.org/10.1016/j.neuroscience.2019.10.048
157. Zhou M., Zhang T., Zhang X., Zhang M., et al. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS Appl. Mater. Interfaces, 2022, Vol. 14, no. 33, pp. 37478–37492. - https://doi.org/10.1021/acsami.2c10364.
158. Zois C.E., Harris A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, Vol. 94, no. 2, pp. 137–154. - http://doi.org/10.1007/s00109-015-1377-9
159. Zong X., Li Y., Liu C., Qi W., et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics, 2020, Vol. 10, no. 26, pp. 12090–12110. - https://doi.org/10.7150/thno.51573
Supplementary files
Review
For citations:
Bobrov M.Yu., Nikitin V.S., Burak M.Yu. Metabolic reprogramming of microglia and astrocytes is a regulatory factor of neuroinflammation in ischemic stroke. Medical Immunology (Russia). 2025;27(6):1161-1180. (In Russ.) https://doi.org/10.15789/1563-0625-MRO-3131
JATS XML





































