MAJOR AND LYMPHOCYTE POPULATIONS OF HUMAN PERIPHERAL BLOOD LYMPHOCYTES AND THEIR REFERENCE VALUES, AS ASSAYED BY MULTI-COLOUR CYTOMETRY
https://doi.org/10.15789/1563-0625-2009-2-3-227-238
Abstract
Abstract. Determination of lymphocyte subpopulations and their phenotypes is an important diagnostic feature, in order to elucidate some disturbances connected with immune system functioning. However, insufficient data are obtained when analyzing only major populations of peripheral lymphocytes. In order to perform clinical diagnostics, the data about minor lymphocytic populations and activated cellular pools seem to be more pertinent.
Studies of peripheral blood cell subpopulations of healthy donors performed in different Russian regions allowed to assess quantitative distribution intervals for both major and minor immune cell subpopulations in humans. The results obtained, as compared with data from literature, provide an evidence for similar reference intervals for main immune cell subpopulations in healthy donors, independent on their habitation area.
Present work has resulted into development of algorithms for cytometric studies and generation of certain panels of monoclonal antibodies enabling evaluation of all main lymphocyte subpopulations, as well as their minor subsets participating in emerging immune response. The distribution intervals have been estimated for such minor subpopulations, as B1- and B2-lymphocytes, memory B-cells, γδ- and αβT-cells, regulatory and naїve T-cells, cytotoxic and secretory NK-cell polupations.
The results of present study, while been performed with peripheral blood of healthy donors, may provide a basis of reference values when studying subpopulation profile of immune cells.
About the Authors
S. V. KhaidukovRussian Federation
A. V. Zurochka
Russian Federation
Areg A. Totolian
Russian Federation
V. A. Chereshnev
Russian Federation
References
1. Тотолян Арег А., Балдуева И.А., Бубнова Л.Н., Закревская А.В., Зуева Е.Е., Калинина Н.М., Лисицина З.Н. Стандартизация методов иммунофенотипирования клеток крови и костного мозга человека // Медицинская иммунология. – 1999. – Т. 1, № 5. – С. 21-43.
2. Хайдуков С.В. Подходы к стандартизации метода проточной цитометрии для иммунофенотипирования. Настройка цитометров и подготовка протоколов для анализа // Медицинская иммунология. – 2007. – Т. 9, № 6. – С. 569-574.
3. Agematsu K., Nagumo H., Shinozaki K., Hokibara S., Yasui K., et al. Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome // J. Clin. Invest. – 1998. – Vol. 102, N 4. – P. 853-860.
4. Becker H., Weber C., Storch S., Federlin K. Relationship between CD5+ B lymphocytes and the activity of systemic autoimmunity // Clin. Immunol. Immunopathol. – 1990. – Vol. 56, N 2. – P. 219 - 225.
5. Biron C.A., Nguyen K.B., Pien G.C., Cousens L.P., Salazar-Mather T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines // Annu. Rev. Immunol. – 1999. – Vol. 17. – P. 189-220.
6. Caccamo N., Dieli F., Wesch D., Jomaa H., Eberl M. Sex-specific phenotypical and functional differences in peripheral human Vgamma9/Vdelta2 T cells. // J. Leukoc. Biol. – 2006. – Vol. 79. N 4. – P. 663-666.
7. Chen Z.W., Letvin N.L. Adaptive immune response of Vgamma2Vdelta2 T cells: a new paradigm. // Trends Immunol. – 2003. – Vol. 24. – P. 213-219.
8. Comans-Bitter W.M., de Groot R., van den Beemd R., Neijens H.J., et al. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. // J. Pediatr. – 1997. – Vol. 130, N 3. – P. 388-393.
9. Dieli F., Troye-Blomberg M., Ivanyi J., et al. Granulysindependent killing of intracellular and extracellular Mycobacterium tuberculosis by gamma9/ Vdelta2 T lymphocytes. // J. Infect. Dis. – 2001. – Vol. 184. – P. 1082-1085.
10. Ebo D., DeClerck L.S., Bridts C.H., Stevens W.J. Expression of CD5 and CD23 on B cells of patients with rheumatoid arthritis, systemic lupus erythematosus and Sjogren’s syndrome. Relationship with disease activity and treatment // In Vivo. 1994. – Vol. 8, N 4. – P. 577-580.
11. French A.R., Yokoyama W.M. Natural killer cells and viral infections. // Curr. Opin. Immunol. – 2003. – Vol. 15, – P. 45-51.
12. Girardi M., Oppenheim D.E., Steele C.R., et al. Regulation of cutaneous malignancy by gammadelta T cells // Science. – 2001. ‑ Vol. 294. – P. 605-609.
13. Hultin L.E., Hausner M.A., Hultin P.M., Giorgi J.V. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes // Cytometry. – 1993. – Vol. 14, N 2, – P. 196-204.
14. Ichkawa Y., Shimizu H., Yoshida M., Takaya M., Arimori S. T cells bearing gamma/delta T cell receptor and their expression of activation antigen in peripheral blood from patients with Sjogren’s syndrome // Clin. Exp. Rheumatol. – 1991. –Vol. 9. – P. 603-609.
15. Iciek L.A., Waldschmidt T.J., Griffiths M.M., Brooks K.H. B-1 cells in systemic autoimmune responses: IgM+, Fc epsilon Rdull B cells are lost during chronic graft-versus-host disease but not in murine AIDS or collagen-induced arthritis // Immunol. Invest. – 1994. – Vol. 23, N 4-5. – P. 293 - 311.
16. Inngjerdingen M., Damaj B., Maghazachi A.A. Expression and regulation of chemokine receptors in human natural killer cells // Blood. – 2001. – Vol. 97. – P. 367-375.
17. Kabelitz D., Wesch D. Role of gamma delta T-lymphocytes in HIV infection // Eur. J. Med. Res. – 2001. Vol. 6, – P. 169-174.
18. Kantor A.B. The development and repertoire of B-1 cells (CD5 B cells) // Immunol. Today. – 1991. – Vol. 12, N 11. – P. 389-391.
19. Kazbay K., Osterland C.K. The frequency of Leu 1+ B cells in autoantibody positive and negative autoimmune diseases and in neonatal cord blood // Clin. Exp. Rheumatol. – 1990. – Vol. 8, N 3. – P. 231 - 235.
20. Kretowski A., Mysliwiec J., Szelachowska M., et al. Gammadelta T-cells alterations in the peripheral blood of high risk diabetes type 1 subjects with subclinical pancreatic B-cells impairment. // Immunol. Lett. – 1999. – Vol. 68. – P. 289–293.
21. Lafarge X., Merville P., Cazin M.C., et al. Cytomegalovirus infection in transplant recipients resolves when circulating gammadelta T lymphocytes expand, suggesting a protective antiviral role // J. Infect. Dis. – 2001. – Vol. 184. – P. 533-541.
22. Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. // J. Exp. Med. – 2006. – Vol. 203, N 7. – P. 1701-1711.
23. Michie C.A., McLean A., Alcock C., Beverley P.C. Lifespan of human lymphocyte subsets defined by CD45 isoforms // Nature. – 1992. – Vol. 6401, N 360. – P. 264-265.
24. Morita C.T., Beckman E.M., Bukowski J.F., et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ-T cells. // Immunity. – 1995. – Vol. 3. – P. 495-507.
25. Pope V., Larsen S.A., Rice R.J., Goforth S.N., et al. Flow Cytometric Analysis of Peripheral Blood Lymphocyte Immunophenotypes in Persons Infected with Treponema pallidum. // Clin. Diagn. Lab. Immunol. – 1994. – Vol. 1, N 1. – P. 121-124.
26. Sanders M.E., Makgoba M.W., Shaw S. Human naive and memory T cells: reinterpretation of helperinducer and suppressor-inducer subsets. // Immunol. Today. – 1988. – Vol. 9, N 7-8. – P. 195-199.
27. Schubert L.A., Jeffery E., Zhang Y., Ramsdell F., Ziegler S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. // J. Biol. Chem. – 2001. – Vol. 276, N 40. – P. 37672 - 37679.
28. Sen G., Bikah G., Venkataraman C., Bondada S. Negative regulation of antigen receptormediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. // Eur. J. Immunol. – 1999. – Vol. 29, N 10. – P. 3319-3328.
29. Tangye S.G., Liu Y.J., Aversa G., Phillips J.H., de Vries J.E. Identification of functional human splenic memory B cells by expression of CD148 and CD27 // J. Exp. Med. – 1998. – Vol. 188, N 9. – P. 1691-1703.
30. Warren H.S., Skipsey L.J. Phenotypic analysis of a resting subpopulation of human peripheral blood NK cells: the FcR gamma III (CD16) molecule and NK cell differentiation // Immunology. – 1991. – Vol.72, N 1. – P. 150-157.
31. Yamashita N., Kaneoka H., Kaneko S., Takeno M., et al. Role of gammadelta T lymphocytes in the development of Behçet‘s disease // Clin. Exp. Immunol. – 1997. – Vol. 107, N 2. – P. 241-247.
32. Zidovec Lepej S., Vince A., Rakušic S., et al. Center for disease control (CDC) flow cytometry panel for human immunodeficiency virus infection allows recognition of infectious mononucleosis caused by Epstein-Barr virus or Cytomegalovirus // Croat. Med. J. – 2003. – Vol. 44. – P. 702-706.
Review
For citations:
Khaidukov S.V., Zurochka A.V., Totolian A.A., Chereshnev V.A. MAJOR AND LYMPHOCYTE POPULATIONS OF HUMAN PERIPHERAL BLOOD LYMPHOCYTES AND THEIR REFERENCE VALUES, AS ASSAYED BY MULTI-COLOUR CYTOMETRY. Medical Immunology (Russia). 2009;11(2-3):227-238. (In Russ.) https://doi.org/10.15789/1563-0625-2009-2-3-227-238