Immunological features of different phenotypes in chronic rhinosinusitis
https://doi.org/10.15789/1563-0625-IFO-3026
Abstract
Chronic rhinosinusitis (CRS) is a disease which manifests with inflammation of the upper respiratory tract. Two main phenotypes can be distinguished in CRS: a clinical form with polypous tissue, and a clinical variant without polyposis. With regard of increased cytokine concentrations, the inflammatory response in CRS can be divided into 3 endotypes: Th1 (IFNγ), Th2 (IL-4, IL-5, IL-13) and Th3 type (IL-17, IL-22). The pathogenesis of inflammation in CRS with nasal polyps and polyposis-free cases is quite different, and, according to current publications, the data on prevalence of different endotypes is very contradictory, thus confirming the need for further studies of CRS development. These important medical and social features of diseases affecting nasal mucosa and paranasal sinuses require further studies in pathogenesis of CRS. This review covers information about the immunological features and dysfunctions that lead to occurence of CRS with or without polyps. The purpose of this review article is to study the influence of the first-line immune defense, components of innate and acquired immunity on the pathogenesis of CRS.
The article provides a review of the worldwide research publications in the field. The authors conducted a search for different items of immune response related to development of CRS with and without polyps. We used keywords and filters in the PubMed and Google Scholar, as well as in Scopus and Web of Science databases.
So far, low efficiency of various treatment methods used may be due to heterogeneous immunopathology. The use of biological preparations, although approved, may be non-reliable, since these Th2-targeted drugs may be administered to patients with non-Th2 disease. The presence of eosinophils and pus may provide a basis for endotype extrapolation. However, the clinicians treating CRS do not have widespread access to laboratory tests in order to specify the CRS type and to administer a tailored drug management. Patients with any type of inflammation may suffer from latent infections caused by bacteria, fungi or viruses, thus making difficult a specific evaluation of polarized immune response. Further studies on the links of immunological pathogenesis in CRS will allow us to develop a personalized algorithm for the diagnosis and treatment of such patients.
About the Authors
A. M. LazarevaRussian Federation
Lazareva A.M., PhD (Medicine), Junior Research Associate
3g Partizan Zheleznyak St, Krasnoyarsk, 660022
O. V. Smirnova
Russian Federation
Smirnova O.V., PhD, MD (Medicine), Professor, Head, Laboratory of Molecular Cellular Pathophysiology
3g Partizan Zheleznyak St, Krasnoyarsk, 660022
References
1. Bae C.H., Na H.G., Choi Y.S., Song S.Y., Kim Y.D. Clusterin induces MUC5AC expression via activation of NF-kappaB in human airway epithelial cells. Clin. Exp. Otorhinolaryngol., 2018, Vol. 11, no. 2, pp. 124-132.
2. Boita M., Bucca C., Riva G., Heffler E. Release of type 2 cytokines by epithelial cells of nasal polyps. J. Immunol. Res., 2016, Vol. 2016, 2643297. doi: 10.1155/2016/2643297.
3. Böscke R., Vladar E.K., Könnecke M., Hüsing B., Linke R., Pries R., Reiling N., Axelrod J.D., Nayak J.V., Wollenberg B. Wnt signaling in chronic rhinosinusitis with nasal polyps. Am. J. Respir. Cell Mol. Biol., 2017, Vol. 56, Iss. 5, pp. 575-584.
4. Cho D.Y., Nayak J.V., Bravo D.T., Le W., Nguyen A. Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis. Int. Forum Allergy Rhinol., 2013, Vol. 3, pp. 376-383.
5. Du K., Wang M., Zhang N., Yu P., Wang P., Li Y. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs. Clin. Transl. Allergy, 2021, Vol. 11, e12059. doi: 10.33029/1816-2134-2023-44-3-379-390.
6. Ebenezer J.A., Christensen J.M., Oliver B.G., Oliver R.A., Tjin G., Ho J., Habib A.R. Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology, 2017, Vol. 55, Iss. 3, pp. 234-241.
7. Fokkens W.J., Lund V.J., Hopkins C., Hellings P.W., Kern R., Reitsma S., Toppila-Salmi S., BernalSprekelsen M., Mullol J., Alobid I. Terezinha Anselmo-Lima W., Bachert C., Baroody F., Cervin A., Cohen N., Constantinidis J. European position paper on rhinosinusitis and nasal polyps, 2020. Rhinology 2020, Vol. 58, Suppl. S29, pp. 1-464.
8. Ito T., Ikeda S., Asamori T., Honda K., Kawashima Y. Increased expression of pendrin in eosinophilic chronic rhinosinusitis with nasal polyps. Braz. J. Otorhinolaryngol, 2019, Vol. 85, Iss. 6, pp. 760-765.
9. Jiao J., Duan S., Meng N., Li Y., Fan E. Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy, 2016, Vol. 46, pp. 449-460.
10. Johnston L.K., Bryce P.J. Understanding Interleukin 33 and its roles in eosinophil development. Front. Med., 2017, Vol. 4, 51. doi: 10.3389/fmed.2017.00051.
11. Kaneko Y., Kohno T., Kakuki T., Takano K.I., Ogasawara N., Miyata R., Kikuchi S. The role of transcriptional factor p63 in regulation of epithelial barrier and ciliogenesis of human nasal epithelial cells. Sci. Rep., 2017, Vol. 7, pp. 10-15.
12. Kao S.S., Bassiouni A., Ramezanpour M., Finnie J., Chegeni N., Colella A.D., Chataway T.K., Wormald P.J. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J. Allergy Clin. Immunol., 2021, Vol. 147, Iss. 1, pp. 168-178.
13. Kato A., Peters A.T., Stevens W.W., Schleimer R.P. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy, 2022, Vol. 77, Iss. 3, pp. 812-826.
14. Kato K., Chang E.H., Chen Y., Lu W., Kim M.M., Niihori M. MUC1 contributes to goblet cell metaplasia and MUC5AC expression in response to cigarette smoke in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, Vol. 319, Iss. 1 pp. L82-L90.
15. Kim D.K., Jin H.R., Eun K.M., Mo J.H., Cho S.H., Oh S. The role of interleukin-33 in chronic rhinosinusitis. Thorax, 2017, Vol. 72, Iss. 7, pp. 635-645.
16. Klingler A.I., Stevens W.W., Tan B.K., Peters A.T., Poposki J.A., Grammer L.C., Welch K.C., Smith S.S., Conley D.B., Kern R.C. Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. J. Allergy Clin. Immunol., 2021, Vol. 147, Iss. 4, pp. 1306-1317.
17. Liao B., Cao P.P., Zeng M., Zhen Z., Wang H. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy, 2015, Vol. 70, Iss. 9, pp. 1169-1180.
18. Meng J., Zhou P., Liu Y., Liu F., Yi X., Liu S., Holtappels G., Bachert C., Zhang N. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. Braz. J. Otorhinolaryngol., 2013, Vol. 1, pp. 3-39.
19. Mueller S.K., Wendler O., Nocera A., Grundtner P. Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol., 2019, Vol. 9, Iss. 10, pp. 1212-1219.
20. Nagarkar D.R., Poposki J.A., Tan B.K. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol., 2013, Vol. 132, Iss. 3, pp. 593-600.
21. Park S.K., Jin Y.D., Park Y.K., Yeon S.H., Xu J., Han R.N., Rha K.S. IL-25-induced activation of nasal fibroblast and its association with the remodeling of chronic rhinosinusitis with nasal polyposis. PLoS One, 2017, Vol. 12, e0181806. doi:10.1371/journal.pone.0181806.
22. Shin H.W., Kim D.K., Park M.H., Eun K.M., Lee M., So D., Kong I.G. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol., 2015, Vol. 135, Iss. 6, pp. 1476-1485.
23. Soler Z.M., Yoo F., Schlosser R.J., Mulligan J., Ramakrishnan V.R., Beswick D.M., Alt J.A., Mattos J.L. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int. Forum Allergy Rhinol., 2020, Vol. 10, Iss. 3, pp. 343-355.
24. Soyka M.B., Wawrzyniak P., Eiwegger T., Holzmann D., Treis A., Wanke K. Effective epithelial barrier in chronic rhinosinusitis: The regulation of tight junctions by IFN-gamma and IL-4. J. Allergy Clin. Immunol., 2012, Vol. 130, Iss. 5, pp. 1087-1096.e10.
25. Wise S.K., Laury A.M., Katz E.H., Den Beste K.A. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int. Forum Allergy Rhinol., 2014, Vol. 4, Iss. 5, pp. 361-370.
26. Wu D., Yan B., Wang Y., Wang C., Zhang L. Prognostic and pharmacologic value of cystatin SN for chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol., 2021, Vol. 148, Iss. 2, pp. 450-460.
27. Xu X., Luo S., Li B., Dai H., Zhang J. IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts. Exp. Biol. Med., 2019, Vol. 244, pp. 770-780.
28. Yan B., Lou H., Wang Y., Li Y., Meng Y., Qi S. Epithelium-derived cystatin SN enhances eosinophil activation and infiltration through IL-5 in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol., 2019, Vol. 144, Iss. 2, pp. 455-469.
Supplementary files
Review
For citations:
Lazareva A.M., Smirnova O.V. Immunological features of different phenotypes in chronic rhinosinusitis. Medical Immunology (Russia). 2025;27(2):275-286. (In Russ.) https://doi.org/10.15789/1563-0625-IFO-3026