Content of Th17 related and Th2 cytokines in asthma patients with cold airway hyperresponsiveness
https://doi.org/10.15789/1563-0625-COT-3020
Abstract
The phenomenon of cold airway hyperresponsiveness is rather common among patients with bronchial asthma. Possible participation of immune mechanisms in its occurence is scarcely studied. In particular, there is no information about interaction between Th17-related cytokines, and cytokines of Th2 immune response related to inflammation in asthma patients with cold-induced bronchospasm.Our objective was to evaluate the contents of IL-17A, IL-6, IL-22, IL-4 and IL-13 interleukins in asthma patients, and to specify their role in the formation of cold airway hyperresponsiveness. Spirometric indices of forced expiratory flow were measured in 43 patients with bronchial asthma. The content of interleukins in blood serum was estimated before and after bronchoprovocation test with 3-min. isocapnic hyperventilation with cold (-20 °C) air. Two groups of patients were formed with presence (group 1, n = 14) and absence (group 2, n = 29) of cold airway hyperresponsiveness, verified by the degree of forced expiratory volume reduction per 1 sec. (∆FFV1ihca) after the cold test (-16.5 (-20.0 – -12.0)% and -2.3 (-3.5 – -0.8)%, respectively; p < 0.0001). In group 1, when compared with group 2, lower baseline values of FEV1 (88.1±3.1% and 96.6±2.2%, p = 0.044), and forced midexpiratory flow (MEF25-75 62.4±3.87% and 75.6±3.7%, p = 0.013) were registered. Moreover, the baseline contents of IL-17A, IL-6, IL-4 in subjects with cold airway hyperresponsiveness were significantly higher than in patients who did not respond to cold air. There was a correlation between IL-17A content in blood and severity of bronchial reaction (∆FEV1ihca) to cold test (Rs = -0.33; p = 0.049). In asthma patients with cold airway hyperresponsiveness, high contents of IL-17A, IL-6 and IL-4 suggest a participation of both Th2 and Th1/Th17 cytokines in regulation of cold-induced bronchospasm and immune response with development of immune inflammation of “Th2 low” subtype.
About the Authors
A. B. PirogovRussian Federation
Pirogov A.B., PhD (Medicine), Associate Professor, Senior Research Associate, Laboratory of Functional Research of Respiratory System
22 Kalinin St., Blagoveshchensk 675000
A. G. Prikhodko
Russian Federation
Prikhodko A.G., PhD, MD (Medicine), Chief Research Associate, Laboratory of Functional Research of Respiratory System
22 Kalinin St., Blagoveshchensk 675000
N. A. Pirogova
Russian Federation
Pirogova N.A., PhD (Medicine), Research Associate, Laboratory of Functional Research of Respiratory System
22 Kalinin St., Blagoveshchensk 675000
D. E. Naumov
Russian Federation
Naumov D.E., PhD (Medicine), Head, Laboratory of Molecular and Translational Research
22 Kalinin St., Blagoveshchensk 675000
D. A. Gassan
Russian Federation
Gassan D.A., PhD (Medicine), Research Associate, Laboratory of Molecular and Translational Research
22 Kalinin St., Blagoveshchensk 675000
J. M. Perelman
Russian Federation
Perelman J.M., PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Functional Research of Respiratory System
22 Kalinin St., Blagoveshchensk 675000
References
1. Nikolskii A.A., Shilovskiy I.P., Yumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petukhova O.A., Kudlay D.A., Khaitov M.R. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya = Immunologiya, 2021, Vol. 42, no. 6, рр. 600-614. (In Russ.)
2. Pirogov A.B., Prikhodko A.G., Perelman N.L., Afanasyeva E.Yu., Kochegarova E.Yu., Oshur L.Yu., Perelman J.M. Possibilities of achieving of bronchial asthma control against the background of baseline therapy with beclomethasone/formoterol extrafine fixed combination: an open observational prospective study. Farmateka = Farmateka, 2020, Vol. 27, no. 10, pp. 80-87. (In Russ.)
3. Prikhodko A.G., Perelman J.M., Kolosov V.P. Airway hyperresponsiveness. Vladivostok: Dalnauka, 2011. 204 р.
4. Ulyanychev N.V. Systematic research in medicine. Saarbrücken: LAP LAMBERT, 2014. 140 р.
5. Bedoya S.K., Lam B., Lau K., Larkin J. 3rd. Th17 cells in immunity and autoimmunity. Clin. Dev. Immunol., 2013, Vol. 2013, 986789. doi: 10.1155/2013/986789.
6. Chen W., Cao Y., Zhong Y., Jing Sun, Dong J. The mechanisms of effector Th cell responses contribute to Treg cell function: New insights into pathogenesis and therapy of asthma. Front. Immunol., 2022, Vol. 11, no. 13, 862866. doi: 10.3389/fimmu.2022.862866.
7. Desai M., Oppenheimer J. Elucidating asthma phenotypes and endotypes: progress towards personalized medicine. Ann. Allergy Asthma Immunol., 2016, Vol. 116, no. 5, рр. 394-401.
8. Doran E., Cai F., Holweg C.T.J., Wong K., Brumm J., Arron J.R. Interleukin-13 in asthma and other eosinophilic disorders. Front. Med., 2017, Vol. 4, 139. doi: 10.3389/fmed.2017.00139.
9. Duvall M.G., Krishnamoorthy N., Levy B.D. Non-type 2 inflammation in severe asthma is propelled by neutrophil cytoplasts and maintained by defective resolution. Allergol. Int., 2019, Vol. 68, no. 2, рр. 143-149.
10. Frey A., Lunding L.P., Ehlers J.C., Weckmann M., Zissler U.M., Wegmann M. More than just a barrier: The immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol., 2020, Vol. 11, 761. doi: 10.3389/fimmu.2020.00761.
11. Fujisawa T., Chang M.M., Velichko S., Thai P., Hung L.Y., Huang F., Phuong N., Chen Y., Wu R. NF-κB mediates IL-1β- and IL-17A-induced MUC5B expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 2011, Vol. 45, no. 2, рр. 246-252.
12. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2023 update). Available at: https://ginasthma.org/wp-content/uploads/2023/07/GINA-2023-Full-report-23_07_06-WMS.pdf.
13. Habib N., Pasha M.A., Tang D.D. Current understanding of asthma pathogenesis and biomarkers. Cells, 2022, Vol. 11, no. 17, 2764. doi: 10.3390/cells11172764.
14. Howell I., Howell A., Pavord I.D. Type 2 inflammation and biological therapies in asthma: Targeted medicine taking flight. J. Exp. Med., 2023, Vol. 220, no. 7, e20221212. doi: 10.1084/jem.20221212.
15. Junttila I.S. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front. Immunol., 2018, Vol. 9, 888. doi: 10.3389/fimmu.2018.00888.
16. Kingston H. Mills G. IL-17 and IL-17- producing cells in protection versus pathology. Nat. Rev. Immunol., 2023, Vol. 23, рр. 38-54.
17. Koh C.-H., Kim B.-S., Kang C.-Y., Chung Y., Seo H.IL-17 and IL-21: Their immunobiology and therapeutic potentials. Immune Netw., 2024, Vol. 24, no. 1, e2. doi: 10.4110/in.2024.24.e2.
18. McFarlane A., Pohler E., Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J., 2023, Vol. 290, no. 10, рр. 2525-2552.
19. McIntyre A.P., Viswanathan R.K. Phenotypes and endotypes in asthma. Adv. Exp. Med. Biol., 2023, Vol. 1426, рр. 119-142.
20. Mills K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol., 2023, Vol. 23, no. 1, рр. 38-54.
21. Nishihara M., Ogura H., Ueda N., Tsuruoka M., Kitabayashi C., Tsuji F., Aono H., Ishihara K., Huseby E., Betz U.A., Murakami M., Hirano T. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol., 2007, Vol. 19, no. 6, рр. 695-702.
22. Ono M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology, 2020, Vol. 160, no. 1, рр. 24-37.
23. Varricchi G., Brightling C.E., Grainge C., Lambrecht B.N., Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur. Respir. J., 2024, Vol. 63, no. 4, 2301619. doi: 10.1183/13993003.01619-2023.
24. Xie Y., Abel P.W., Casale T.B., Tu Y. TH17 cells and corticosteroid insensitivity in severe asthma. J. Allergy Clin. Immunol., 2022, Vol. 1, no. 49, рр. 467-479.
25. Yu X., Li L., Cai B., Zhang W., Liu Q., Li N., Shi X., Yu L., Chen R., Qiu C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir. Res., 2024, Vol. 25, 76. doi: 10.1186/s12931-024-02706-4.
26. Zeng J., Li M., Zhao Q., Chen M., Zhao L., Wei S., Yang H., Zhao Y., Wang A., Shen J., Du F., Chen Y., Deng S., Wang F., Zhang Z., Li Z., Wang T., Wang S., Xiao Z., Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J. Pharm. Anal., 2023, Vol. 13, no. 6, рр. 545-562.
27. Zhang X., Xu Z., Wen X., Huang G., Nian S., Li L., Guo X., Ye Y., Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol. Cell Biol., 2022, Vol. 100, no. 3, рр. 144-159.
Supplementary files
Review
For citations:
Pirogov A.B., Prikhodko A.G., Pirogova N.A., Naumov D.E., Gassan D.A., Perelman J.M. Content of Th17 related and Th2 cytokines in asthma patients with cold airway hyperresponsiveness. Medical Immunology (Russia). 2025;27(2):351-360. (In Russ.) https://doi.org/10.15789/1563-0625-COT-3020