Determination of t cell immune response to SARS-CoV-2 coronavirus based on induced γ-interferon production by specific T cells upon their stimulation by viral antigen
https://doi.org/10.15789/1563-0625-DOT-3007
Abstract
The aim of this work was to study the capacity of human T cells immune for SARS-CoV-2, to produce IFNγ, a marker of T cell immunity, in response to stimulation by a peptide pool in whole blood. Eighty samples of whole blood were received from the volunteers with known medical history in 2021, and 258 volunteers were examined in September-October 2022. In this study, 2 detection techniques were used, i.e.: (1) solid-phase enzyme immunoassay to determine antibodies of class G to RBD SARS-CoV-2; (2) IGRA test to determine IFNγ produced by antigen-specific lymphocytes in response to their stimulation by viral antigen. The parameters of the IGRA test were optimized with a sample of 80 specimens from the volunteers. The threshold value of the IFNγ level was determined (4.85 pg/mL), at the diagnostic specificity of 100% (80.6-100), and diagnostic sensitivity of 92.19% (83-96.6%), 95% CI. The study was further continued with a sample of 258 volunteers. Of them, 28.7%, did not exceed the threshold level of IFNγ after stimulation, according to results of the IGRA test. Meanwhile, all volunteers exhibited class G antibodies to RBB SARS-CoV-2. There was no correlation between the levels of antibodies and the level of interferon response in the entire group. When comparing IgG antibody levels and the amplitude of IFNγ (if exceeding the baseline level) in the groups differing in the time of the last vaccination, the median values of the parameters were slightly higher for the subgroup which was revaccinated 1-2 months before the study, while a significant difference between these subgroups was revealed only when evaluating IFNγ, pg/mL (Mann–Whitney criterion, p = 0.0321). According to the results of the study, it can be assumed that all the patients in the sample who were vaccinated and had COVID-19 infection, showed a humoral immune response. However, about a third of them lacked cellular immunity to SARS-CoV-2. There was no correlation between the levels of antibodies and the level of interferon response (Spearman’s criterion). Revaccination within previous 1-2 months has been shown to promote the increased amplitude of interferon response.
About the Authors
B. S. CherepovichRussian Federation
Bogdan S. Cherepovich, Junior Researcher at the Laboratory of Genetics of RNA-containing Viruses
15 1st Dubrovskaya St Moscow 115088
Phone: +7 (495) 674-54-97
A. M. Kudryashova
Russian Federation
Kudryashova A.M., Research Associate, Laboratory of Medical Biotechnology
Moscow
L. L. Pankratieva
Russian Federation
Pankratieva L.L., PhD, MD (Medicine), Professor, Head of the Clinical Research Center
Moscow
A. V. Bogolyubova
Russian Federation
Bogolyubova A.V., PhD (Biology), Head, Laboratory of Transplantation Immunology
Moscow
V. A. Manuilov
Russian Federation
Manuilov V.A., PhD (Biology), Senior Research Associate, Laboratory of Translational Medicine
Moscow
V. A. Gushchin
Russian Federation
Gushchin V.A., PhD, MD (Biology), Head, Laboratory of Mechanisms of Population Variability of Pathogenic Microorganisms and Reference Center for Coronavirus Infection
Moscow
A. A. Pochtovyi
Russian Federation
Pochtovyi A.A., PhD (Biology), Research Associate, Laboratory of Mechanisms of Population Variability of Pathogenic Microorganisms
Moscow
O. V. Borisova
Russian Federation
Borisova O.V., PhD (Chemistry), Head, Laboratory of Medical Biotechnology
Moscow
O. A. Svitich
Russian Federation
Svitich O.A., PhD, MD (Medicine), Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Molecular Immunology
Moscow
References
1. Bange, E.M.; Han, N.A.; Wileyto, P.; Kim, J.Y.; Gouma, S.; Robinson, J.; Greenplate, A.R.; Hwee, M.A.; Porterfield, F.; Owoyemi, O.; Naik, K.; Zheng, C.; Galantino, M.; Weisman, A.R.; et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature medicine, 27, 7 (2021), 1280–1289.
2. Bayart, J.L.; Douxfils, J.; Gillot, C.; David, C.; Mullier, F.; Elsen, M.; Eucher, C.; Eeckhoudt, S. Van; Roy, T.; Gerin, V.; Wieers, G.; Laurent, C.; Closset, M.; Dogné, J.M.; et al. Waning of IgG, Total and Neutralizing Antibodies 6 Months Post-Vaccination with BNT162b2 in Healthcare Workers. Vaccines, 9, 10 (2021).
3. Le Bert, N.; Clapham, H.E.; Tan, A.T.; Chia, W.N.; Tham, C.Y.L.; Lim, J.M.; Kunasegaran, K.; Tan, L.W.L.; Dutertre, C.A.; Shankar, N.; Lim, J.M.E.; Sun, L.J.; Zahari, M.; Tun, Z.M.; et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. The Journal of experimental medicine, 218, 5 (2021).
4. Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; Chia, W.N.; Chen, M.I.C.; Wang, L.F.; Ooi, E.E.; et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584, 7821 (2020), 457–462.
5. Bilich, T.; Nelde, A.; Heitmann, J.S.; Maringer, Y.; Roerden, M.; Bauer, J.; Rieth, J.; Wacker, M.; Peter, A.; Horber, S.; Rachfalski, D.; Marklin, M.; Stevanovic, S.; Rammensee, H.G.; et al. T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Science translational medicine, 13, 590 (2021).
6. Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; Nakao, C.; Rayaprolu, V.; Rawlings, S.A.; Peters, B.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (New York, N.Y.), 371, 6529 (2021).
7. Goletti, D.; Vincenti, D.; Carrara, S.; Butera, O.; Bizzoni, F.; Bernardini, G.; Amicosante, M.; and Girardi, E. Selected RD1 peptides for active tuberculosis diagnosis: comparison of a gamma interferon whole-blood enzyme-linked immunosorbent assay and an enzyme-linked immunospot assay. Clinical and diagnostic laboratory immunology, 12, 11 (2005), 1311–1316.
8. Hasenkrug, K.J.; Feldmann, F.; Myers, L.; Santiago, M.L.; Guo, K.; Barrett, B.S.; Mickens, K.L.; Carmody, A.; Okumura, A.; Rao, D.; Collins, M.M.; Messer, R.J.; Lovaglio, J.; Shaia, C.; et al. Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. mBio, 12, 4 (2021).
9. Kalimuddin, S.; Tham, C.Y.L.; Qui, M.; de Alwis, R.; Sim, J.X.Y.; Lim, J.M.E.; Tan, H.C.; Syenina, A.; Zhang, S.L.; Le Bert, N.; Tan, A.T.; Leong, Y.S.; Yee, J.X.; Ong, E.Z.; et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med (New York, N.Y.), 2, 6 (2021), 682-688.e4.
10. Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; and Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature medicine, 27, 7 (2021), 1205–1211.
11. Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; Peck, L.J.; Ritter, T.G.; de Toledo, Z.; Warren, L.; et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. The New England journal of medicine, 384, 6 (2021), 533–540.
12. Manuylov, V.; Burgasova, O.; Borisova, O.; Smetanina, S.; Vasina, D.; Grigoriev, I.; Kudryashova, A.; Semashko, M.; Cherepovich, B.; Kharchenko, O.; Kleymenov, D.; Mazunina, E.; Tkachuk, A.; and Gushchin, V. Avidity of IgG to SARS-CoV-2 RBD as a Prognostic Factor for the Severity of COVID-19 Reinfection. Viruses, 14, 3 (2022).
13. McMahan, K.; Yu, J.; Mercado, N.B.; Loos, C.; Tostanoski, L.H.; Chandrashekar, A.; Liu, J.; Peter, L.; Atyeo, C.; Zhu, A.; Bondzie, E.A.; Dagotto, G.; Gebre, M.S.; Jacob-Dolan, C.; et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 590, 7847 (2021), 630–634.
14. Molodtsov, I.A.; Kegeles, E.; Mitin, A.N.; Mityaeva, O.; Musatova, O.E.; Panova, A.E.; Pashenkov, M. V.; Peshkova, I.O.; Almaqdad, A.; Asaad, W.; Budikhina, A.S.; Deryabin, A.S.; Dolzhikova, I. V.; Filimonova, I.N.; et al. SARS-CoV-2 specific T cells and antibodies in COVID-19 protection: a prospective study. medRxiv, (2021), 2021.08.19.21262278.
15. Murugesan, K.; Jagannathan, P.; Pham, T.D.; Pandey, S.; Bonilla, H.F.; Jacobson, K.; Parsonnet, J.; Andrews, J.R.; Weiskopf, D.; Sette, A.; Pinsky, B.A.; Singh, U.; and Banaei, N. Interferon-γ Release Assay for Accurate Detection of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Response. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 73, 9 (2021), E3130–E3132.
16. Painter, M.M.; Mathew, D.; Goel, R.R.; Apostolidis, S.A.; Pattekar, A.; Kuthuru, O.; Baxter, A.E.; Herati, R.S.; Oldridge, D.A.; Gouma, S.; Hicks, P.; Dysinger, S.; Lundgreen, K.A.; Kuri-Cervantes, L.; et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 54, 9 (2021), 2133-2142.e3.
17. Petrone, L.; Petruccioli, E.; Vanini, V.; Cuzzi, G.; Najafi Fard, S.; Alonzi, T.; Castilletti, C.; Palmieri, F.; Gualano, G.; Vittozzi, P.; Nicastri, E.; Lepore, L.; Antinori, A.; Vergori, A.; et al. A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27, 2 (2021), 286.e7-286.e13.
18. Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Singh Malik, Y.; Dhama, K.; Iqbal Yatoo, M.; Katterine Bonilla-Aldana, D.; and Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview.
19. Rank, A.; Tzortzini, A.; Kling, E.; Schmid, C.; Claus, R.; Löll, E.; Burger, R.; Römmele, C.; Dhillon, C.; Müller, K.; Girl, P.; Hoffmann, R.; Grützner, S.; and Dennehy, K.M. One Year after Mild COVID-19: The Majority of Patients Maintain Specific Immunity, But One in Four Still Suffer from Long-Term Symptoms. Journal of Clinical Medicine, 10, 15 (2021), 3305.
20. Rodda, L.B.; Netland, J.; Shehata, L.; Pruner, K.B.; Morawski, P.A.; Thouvenel, C.D.; Takehara, K.K.; Eggenberger, J.; Hemann, E.A.; Waterman, H.R.; Fahning, M.L.; Chen, Y.; Hale, M.; Rathe, J.; et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 184, 1 (2021), 169-183.e17.
21. Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; Kato, Y.; Crotty, E.G.; Kim, C.; Rawlings, S.A.; et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 183, 4 (2020), 996-1012.e19.
22. Scurr, M.J.; Lippiatt, G.; Capitani, L.; Bentley, K.; Lauder, S.N.; Smart, K.; Somerville, M.S.; Rees, T.; Stanton, R.J.; Gallimore, A.; Hindley, J.P.; and Godkin, A. Magnitude of venous or capillary blood-derived SARS-CoV-2-specific T cell response determines COVID-19 immunity. Nature Communications 2022 13:1, 13, 1 (2022), 1–9.
23. Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Strålin, K.; Gorin, J.B.; Olsson, A.; Llewellyn-Lacey, S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; Wullimann, D.J.; Kammann, T.; Emgård, J.; Parrot, T.; et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 183, 1 (2020), 158-168.e14.
24. Sheetikov, S.A.; Khmelevskaya, A.A.; Zornikova, K. V.; Zvyagin, I. V.; Shomuradova, A.S.; Serdyuk, Y. V.; Shakirova, N.T.; Peshkova, I.O.; Titov, A.; Romaniuk, D.S.; Shagina, I.A.; Chudakov, D.M.; Kiryukhin, D.O.; Shcherbakova, O. V.; et al. Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein. Frontiers in Immunology, 15, (2024), 1369436.
25. Sherina, N.; Piralla, A.; Du, L.; Wan, H.; Kumagai-Braesch, M.; Andréll, J.; Braesch-Andersen, S.; Cassaniti, I.; Percivalle, E.; Sarasini, A.; Bergami, F.; Di Martino, R.; Colaneri, M.; Vecchia, M.; et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med (New York, N.Y.), 2, 3 (2021), 281-295.e4.
26. Tan, A.T.; Linster, M.; Tan, C.W.; Le Bert, N.; Chia, W.N.; Kunasegaran, K.; Zhuang, Y.; Tham, C.Y.L.; Chia, A.; Smith, G.J.D.; Young, B.; Kalimuddin, S.; Low, J.G.H.; Lye, D.; et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell reports, 34, 6 (2021).
27. Tarke, A.; Sidney, J.; Methot, N.; Yu, E.D.; Zhang, Y.; Dan, J.M.; Goodwin, B.; Rubiro, P.; Sutherland, A.; Wang, E.; Frazier, A.; Ramirez, S.I.; Rawlings, S.A.; Smith, D.M.; et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell reports. Medicine, 2, 7 (2021).
28. Titov, A.; Shaykhutdinova, R.; Shcherbakova, O. V.; Serdyuk, Y. V.; Sheetikov, S.A.; Zornikova, K. V.; Maleeva, A. V.; Khmelevskaya, A.; Dianov, D. V.; Shakirova, N.T.; Malko, D.B.; Shkurnikov, M.; Nersisyan, S.; Tonevitsky, A.; et al. Immunogenic epitope panel for accurate detection of non-cross-reactive T cell response to SARS-CoV-2. JCI insight, 7, 9 (2022).
29. Wyllie, D.; Jones, H.E.; Mulchandani, R.; Trickey, A.; Taylor-Phillips, S.; Brooks, T.; Charlett, A.; Ades, A.; investigators, E.-H.; Moore, P.; Boyes, J.; Hormis, A.; Todd, N.; Reckless, I.; et al. SARS-CoV-2 responsive T cell numbers and anti-Spike IgG levels are both associated with protection from COVID-19: A prospective cohort study in keyworkers. medRxiv, (2021), 2020.11.02.20222778.
30. Zornikova, K. V.; Khmelevskaya, A.; Sheetikov, S.A.; Kiryukhin, D.O.; Shcherbakova, O. V.; Titov, A.; Zvyagin, I. V.; and Efimov, G.A. Clonal diversity predicts persistence of SARS-CoV-2 epitope-specific T-cell response. Communications Biology 2022 5:1, 5, 1 (2022), 1–11.
31. Zuo, J.; Dowell, A.C.; Pearce, H.; Verma, K.; Long, H.M.; Begum, J.; Aiano, F.; Amin-Chowdhury, Z.; Hallis, B.; Stapley, L.; Borrow, R.; Linley, E.; Ahmad, S.; Parker, B.; et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nature immunology, 22, 5 (2021), 620–626.
Supplementary files
Review
For citations:
Cherepovich B.S., Kudryashova A.M., Pankratieva L.L., Bogolyubova A.V., Manuilov V.A., Gushchin V.A., Pochtovyi A.A., Borisova O.V., Svitich O.A. Determination of t cell immune response to SARS-CoV-2 coronavirus based on induced γ-interferon production by specific T cells upon their stimulation by viral antigen. Medical Immunology (Russia). 2025;27(1):45-56. (In Russ.) https://doi.org/10.15789/1563-0625-DOT-3007