VEGF DEPRIVATION AFFECTS ENDOGLIN EXPRESSION IN TROPHOBLAST CELLS AND NATURAL KILLERS
https://doi.org/10.15789/10.15789/1563-0625-VDA-2991
Abstract
Vascular Endothelial Growth Factors (VEGFs) are a group of proteins that involved in the development of various cell types, including endothelial cells, monocytes, macrophages, stem cells, tumor cells, vascular smooth muscle cells, trophoblast cells, and other cells that express VEGF receptors. Pathological conditions, such as abnormalities in placental development, can be caused by disruptions in the production and signaling of VEGFs. Trophoblast cells play a significant role in placental formation and are essential for angiogenesis due to their secretion and reception of VEGF. However, there is a lack of information in the literature regarding the influence of VEGF signaling in trophoblast cells on their functional characteristics. Maternal immune cells, particularly natural killer (NK) cells, have been shown to affect the activity of trophoblasts during pregnancy. Given the high abundance of NK cells in the decidual tissue, it is important to consider their potential influence on the phenotypic changes in trophoblast cells. In this study, we investigated the expression of MICA, MICB, and CD105 proteins by NK cells and trophoblast cells. MICA and MICB are stress markers that allow us to assess cell viability. CD105 is a receptor that is expressed on the surface of various cell types and plays a role in signal transmission from TGFβ family proteins. In particular, endoglin has been shown to regulate signaling from TGFβ by directing signals through the SMAD2/3 or SMAD1/5/8 pathways. According to the literature, endoglin inhibits signaling involving SMAD3. However, it has not yet been determined whether endoglin plays a similar role in NK cells and trophoblasts. The investigation of changes in endoglin expression is a significant issue, as signals from TGFβ are essential for the differentiation of trophoblast cells. Disruption of TGFβ signaling can lead to pregnancy complications and miscarriage. We have demonstrated that VEGF plays a role in regulating the activity of trophoblasts and NK cells. In particular, treatment with neutralizing monoclonal antibodies to VEGF-A resulted in inhibition of the expression of CD105, a VEGF coreceptor, on trophoblasts and NK cells under co-culture conditions. However, pretreatment of trophoblasts with anti-VEGF antibodies did not alter their resistance to the cytotoxic activity of NK cells. Taken together, these findings suggest that inhibition of VEGF signaling results in significant changes in the reception of TGFβ family proteins by trophoblasts and natural killer cells.
About the Authors
Elizaveta Vladimirovna TyshchukRussian Federation
Junior Research Assistant, Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, St. Petersburg, Russian Federation
Elizaveta Alekseevna Denisova
Russian Federation
Research Assistant, Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions FSBSI, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; St. Petersburg, Russian Federation
Oksana Bogdanovna Marko
Russian Federation
Junior Research Assistant, Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, FSBSI, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, St. Petersburg, Russian Federation
Igor Yurievich Kogan
Russian Federation
PhD, MD (Medicine), Head of FSBSI, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, St. Petersburg, Russian Federation
Sergey Alexeyevich Selkov
Russian Federation
PhD, MD (Medicine), Professor, Honored Science Worker, Head, Department of Immunology and Intercellular Interactions, FSBSI, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, St. Petersburg, Russian Federation
Dmitry Igorevich Sokolov
Russian Federation
PhD, MD (Biology), associate professor, Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, FSBSI, Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, St. Petersburg, Russian Federation
References
1. Ander S.E., Diamond M.S.,Coyne C.B. Immune responses at the maternal-fetal interface. Sci Immunol, 2019, Vol.4, no 31. [10.1126/sciimmunol.aat6114] [https://www.ncbi.nlm.nih.gov/pubmed/30635356
2. https://immunology.sciencemag.org/content/immunology/4/31/eaat6114.full.pdf]
3. Apps R., Gardner L., Traherne J., Male V.,Moffett A. Natural-killer cell ligands at the maternal-fetal interface: UL-16 binding proteins, MHC class-I chain related molecules, HLA-F and CD48. Hum Reprod, 2008, Vol.23, no 11, pp. 2535-48. [10.1093/humrep/den223] [https://www.ncbi.nlm.nih.gov/pubmed/18658158]
4. Apte R.S., Chen D.S.,Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 2019, Vol.176, no 6, pp. 1248-1264. [10.1016/j.cell.2019.01.021] [https://www.ncbi.nlm.nih.gov/pubmed/30849371]
5. Cabrera-Sharp V., Read J.E., Richardson S., Kowalski A.A., Antczak D.F., Cartwright J.E., Mukherjee A.,de Mestre A.M. SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion. Endocrinology, 2014, Vol.155, no 8, pp. 3054-64. [10.1210/en.2013-2116] [https://www.ncbi.nlm.nih.gov/pubmed/24848867]
6. Chen D.B.,Zheng J. Regulation of placental angiogenesis. Microcirculation, 2014, Vol.21, no 1, pp. 15-25. [10.1111/micc.12093] [https://www.ncbi.nlm.nih.gov/pubmed/23981199]
7. Chen W.S., Kitson R.P.,Goldfarb R.H. Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1). In Vivo, 2002, Vol.16, no 6, pp. 439-45. [https://www.ncbi.nlm.nih.gov/pubmed/12494887]
8. Clark D.E., Smith S.K., He Y., Day K.A., Licence D.R., Corps A.N., Lammoglia R.,Charnock-Jones D.S. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod, 1998, Vol.59, no 6, pp. 1540-8. [10.1095/biolreprod59.6.1540] [https://www.ncbi.nlm.nih.gov/pubmed/9828203
9. https://watermark.silverchair.com/biolreprod1540.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA6IwggOeBgkqhkiG9w0BBwagggOPMIIDiwIBADCCA4QGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMg7hZUSu19Vfp5F15AgEQgIIDVTeMpOl5VfmxO6HB6kEGUPF1K4FowNqLqtMpZZIqIM-uOr0XmQPaadW3xSTX07Lz4G0zvJeWRZ0nTX8kbTdzvcYGeg2Avb0L1ZJqQTWdL72PsNlt8eZ34saBJBFFzsIEFl6Eb6LzbC9B0gygrLaGK1_cVOR2HIro6FmDduNyK76dLUplgeSSW4CN1tDbnnzbPEYxmOEV3aXmUY-06V9PvRzDolQB7ejCVFIc0ygQUaxj7kj8qpKqaN6AiX7yBGWpod3gsDdFwoJ-2AwU8lG48fVW0x9G_RpSBmfqyebWMigTH8XTSo-hGtSxM0cn5u8HaplyOW_UhQuti9sLtVUDv-c_mzBnb2u4P_PxbZy5mP4FBaQKROC2lTd4qaiCkWg5qKENVDkGSHyeDZCWMHG61OBbuPgMA96INAy48JOga6dncw-hwmRHaVw7Ug6QqYqsD1pHYeP5hjnYjxqQ-J9ywjQNXk9QNv4nut_3X4jfhTvs_gUtO2bYZGz1IPeEiFYiyG4BCjhTeAyNz5Tqs1v9fAtuiLB06kf5X-hJHpgJJTscMlTKp-ZARcCFGStZrwM61Hf8L8vh6_cUrSP9AW0bF60n6l0RjJtyGVSKu6O9fdETtIWbv7F7ucHB6GScWqp9QuCYQ9uXVe3lR9en7G2NQ-Bnutf7KOdhhfu_DoQT9rRml5lPZVPcFWZNUgtLZEYKMMuKQ298JiL0EJtQnzp4wkwnt3gvl-GnxMnXbDyX8I1rr-DxpXpdNgjc93-x98tls5ZHqjf-9xbfNw3sdxmOSPiBSLLHTR3Iy9JLI2W9MPAy87GDBe5T__4jX9RW99TC4Oo6vxwCy8YLP3d6eZC5z8aGZef6pOjG9Ihuu5uL54ryYsbDfZqsPqGbfR8hTE6iH5aNRvemkaS3kCCzNmixcDRgNYyl2hwFneniO54A8oGMfHP4GW4EwljkdjM5j0WG1DuLBgBaHsKoXiKMwugrTyiJnrvHbnxS0FMddEQ1kylBhlYNMEhQ5WhP_TXRXG1H882KYcMHIc-ZPmZIcR94AQG0KU3aJ_UMSioWmtMiguBpoZEZYSAFXIxQKatbDRDV-OxQhosoB7y4sc6tfYDcHEQrgfS0eIZNl0l-SsQYk6GGImHya3c]
10. Clark D.E., Smith S.K., Licence D., Evans A.L.,Charnock-Jones D.S. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol, 1998, Vol.159, no 3, pp. 459-67. [10.1677/joe.0.1590459] [https://www.ncbi.nlm.nih.gov/pubmed/9834463]
11. Eidukaite A., Siaurys A.,Tamosiunas V. Differential expression of KIR/NKAT2 and CD94 molecules on decidual and peripheral blood CD56bright and CD56dim natural killer cell subsets. Fertil Steril, 2004, Vol.81 Suppl 1, no, pp. 863-8. [10.1016/j.fertnstert.2003.10.019] [c]
12. Fitzpatrick T.E., Lash G.E., Yanaihara A., Charnock-Jones D.S., Macdonald-Goodfellow S.K.,Graham C.H. Inhibition of breast carcinoma and trophoblast cell invasiveness by vascular endothelial growth factor. Exp Cell Res, 2003, Vol.283, no 2, pp. 247-55. [10.1016/s0014-4827(02)00044-7] [https://www.ncbi.nlm.nih.gov/pubmed/12581744]
13. Fong G.H., Rossant J., Gertsenstein M.,Breitman M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 1995, Vol.376, no 6535, pp. 66-70. [10.1038/376066a0] [https://www.ncbi.nlm.nih.gov/pubmed/7596436
14. https://www.nature.com/articles/376066a0]
15. Garcia J., Hurwitz H.I., Sandler A.B., Miles D., Coleman R.L., Deurloo R.,Chinot O.L. Bevacizumab (Avastin(R)) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev, 2020, Vol.86, no, pp. 102017. [10.1016/j.ctrv.2020.102017] [https://www.ncbi.nlm.nih.gov/pubmed/32335505]
16. Gong J.H., Maki G.,Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia, 1994, Vol.8, no 4, pp. 652-8. [https://www.ncbi.nlm.nih.gov/pubmed/8152260]
17. Guo B., Slevin M., Li C., Parameshwar S., Liu D., Kumar P., Bernabeu C.,Kumar S. CD105 inhibits transforming growth factor-beta-Smad3 signalling. Anticancer Res, 2004, Vol.24, no 3a, pp. 1337-45. [https://www.ncbi.nlm.nih.gov/pubmed/15274293]
18. Haider S., Lackner A.I., Dietrich B., Kunihs V., Haslinger P., Meinhardt G., Maxian T., Saleh L., Fiala C., Pollheimer J., Latos P.A.,Knofler M. Transforming growth factor-beta signaling governs the differentiation program of extravillous trophoblasts in the developing human placenta. Proc Natl Acad Sci U S A, 2022, Vol.119, no 28, pp. e2120667119. [10.1073/pnas.2120667119] [https://www.ncbi.nlm.nih.gov/pubmed/35867736]
19. Hurwitz H.I., Fehrenbacher L., Hainsworth J.D., Heim W., Berlin J., Holmgren E., Hambleton J., Novotny W.F.,Kabbinavar F. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol, 2005, Vol.23, no 15, pp. 3502-8. [10.1200/JCO.2005.10.017] [https://www.ncbi.nlm.nih.gov/pubmed/15908660]
20. Ito N., Wernstedt C., Engstrom U.,Claesson-Welsh L. Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem, 1998, Vol.273, no 36, pp. 23410-8. [10.1074/jbc.273.36.23410] [https://www.ncbi.nlm.nih.gov/pubmed/9722576
21. https://www.sciencedirect.com/science/article/pii/S0021925819750042?via%3Dihub]
22. Jackson M.R., Carney E.W., Lye S.J.,Ritchie J.W. Localization of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta, 1994, Vol.15, no 4, pp. 341-53. [10.1016/0143-4004(94)90002-7] [https://www.ncbi.nlm.nih.gov/pubmed/7937592]
23. Jin X., Mao L., Zhao W., Liu L., Li Y., Li D., Zhang Y.,Du M. Decidualization-derived cAMP promotes decidual NK cells to be angiogenic phenotype. Am J Reprod Immunol, 2022, Vol.88, no 3, pp. e13540. [10.1111/aji.13540] [https://www.ncbi.nlm.nih.gov/pubmed/35348271]
24. Kendall R.L., Wang G.,Thomas K.A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun, 1996, Vol.226, no 2, pp. 324-8. [10.1006/bbrc.1996.1355] [https://www.ncbi.nlm.nih.gov/pubmed/8806634
25. https://www.sciencedirect.com/science/article/pii/S0006291X96913558?via%3Dihub]
26. Kohler P.O.,Bridson W.E. Isolation of hormone-producing clonal lines of human choriocarcinoma. J Clin Endocrinol Metab, 1971, Vol.32, no 5, pp. 683-7. [10.1210/jcem-32-5-683] [https://www.ncbi.nlm.nih.gov/pubmed/5103722
27. https://academic.oup.com/jcem/article-abstract/32/5/683/2716353?redirectedFrom=fulltext
28. https://watermark.silverchair.com/jcem0683.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAp4wggKaBgkqhkiG9w0BBwagggKLMIIChwIBADCCAoAGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMhF502Mvc2Mu8FtegAgEQgIICUZnwT0t-HWZxwbzXnAz7SxyVCfcqp7SrRlusWKbGlOh09_ku3c612DJoxU_yGfapxlWd35ybR7iFmo6twZa1g3nk4dBu23q2fqDNI1aSlewAaeyjtvhQ7pb7HMMNruT5A1TJswCuHn09TrUXnHLg-2emkbumJ4hwIkF8xtK8QdBXE7RfhXaccxnorfVyJ7st6CbyV4cO6odbc_BXOq9KZqVtPjMGnB-BPjV6C3nTax3_Leb7_h4n65udEZ7l_2DuUiamhjlnWdax5sI3jtUW4cCdjySdtuE593OD_d-4UL0Fs4ijyVGJrQL8ZwxmRkD84AGxaeTKWzqECG4XSmQw84vpMEvBE4VpoeIAnb4hBBg3yChJCAh7QXDMOIUDkC8WIUJCyb0F5qycHhTepzf2gMv-fVjAZQbEvBXHd_VhwKAtwe9Ps44IUUnTZ8mkGuI6QB2yx1uqlxruBityIMvRjgNwg-wV5UjiqyMHHoViPynkSyF1GVgQIk77gvCso5-_mdFq7QM-xGau2rb4OZveiDYGDDDpLKQZgzRly6T3CH5V8RPGewjaiNMvPJnJ_QDZARbe1u8V0NQHG13xd1_mHR7-S9q91IIkiIR92lw4GTWSouOL2YK2WqA8f4-d5yi2LlIWfdpVzMFyeokMu9-JSEb1YN8mnCkx-TmDsCF7cZ9F7GBUtqgtuXe3gmpNMqPKbcDZI1JIxQWPYReNMRI4JNdPXR9g73DYGHIqaPLzqj5ozg0GjB7omgd6DFbOoKIQ1bTKUm8TSmA-nXXGecb_NH8W]
29. Laakkonen J.P., Lahteenvuo J., Jauhiainen S., Heikura T.,Yla-Herttuala S. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol, 2019, Vol.112, no, pp. 91-101. [10.1016/j.vph.2018.10.005] [https://www.ncbi.nlm.nih.gov/pubmed/30342234
30. https://www.sciencedirect.com/science/article/pii/S1537189118301630?via%3Dihub]
31. Lebrin F., Goumans M.J., Jonker L., Carvalho R.L., Valdimarsdottir G., Thorikay M., Mummery C., Arthur H.M.,ten Dijke P. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J, 2004, Vol.23, no 20, pp. 4018-28. [10.1038/sj.emboj.7600386] [https://www.ncbi.nlm.nih.gov/pubmed/15385967
32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524335/pdf/7600386a.pdf]
33. Li D.Y., Sorensen L.K., Brooke B.S., Urness L.D., Davis E.C., Taylor D.G., Boak B.B.,Wendel D.P. Defective angiogenesis in mice lacking endoglin. Science, 1999, Vol.284, no 5419, pp. 1534-7. [10.1126/science.284.5419.1534] [https://www.ncbi.nlm.nih.gov/pubmed/10348742
34. https://science.sciencemag.org/content/284/5419/1534.long]
35. Li Y., Zhu H., Klausen C., Peng B.,Leung P.C. Vascular Endothelial Growth Factor-A (VEGF-A) Mediates Activin A-Induced Human Trophoblast Endothelial-Like Tube Formation. Endocrinology, 2015, Vol.156, no 11, pp. 4257-68. [10.1210/en.2015-1228] [https://www.ncbi.nlm.nih.gov/pubmed/26327470
36. https://watermark.silverchair.com/endo4257.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtowggLWBgkqhkiG9w0BBwagggLHMIICwwIBADCCArwGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMpe2nuFQwuQewEslaAgEQgIICjdrQiDaVCl3BcxnvJU4NI6c1l-rtKi4UoKjE_ajx30U9EBbMh5UgSVwnadaLXB-GlLt0KGx4yuixaCDYW904MBVOAyLwq75Kb86x1ECbo9_Kok9RE5rQe2aVrk1sicKR5zAXxvnOfUT_7iPD2gKu38Y_9Od5ZSslcCkdQoOEk-oHxE8wzvAUxfNXUEsIS_mtxSJtURAwidM8UNfTzfqzCsds4cERJk7Wbq5rfTTsqUA9rJBMabNLFcQdaRv7wQZo-OhxUhBASOFY8iS2wfRwgZOztYjiap07YGTxzFDxqyEQOMVgxXZI0cfwYO_4h_u1owDGDOEI9ecIo9WTfTPKlH89oU84ed5oyK43khOZQjlnQZysPFjJkfwvSlR3cd5KAYxnQ8wXl1vA2vj3M7Eudh62v793HfNxJj8BIT1teEGmu8LqqLPILoTWj_m1ILaE5NJ4V1CRmi_BV6b325FbGdzRRYSqrDKiZiqfXZhlWq1AUoUmsTCssY56alTbA4IWiorewjiJFPlDg-Io1pJ71-R832m4tWBTCWplF_1ItW0YN5uWtQVjcwJGysC1K0bShxGU2wmZO1WVsVBuk5HxMGqmXWBe16tlXoPNDMA0vh4oVjfDzHb7Ig6ftctZ6HetrhM9o3q2nl_3Mq1oCT84v34uctb9IMH_HtKcw8THOzMVGf9NHJ9gNI63ke50M93uWp8r_XiKIMgLF4dWZMROJWhO3WVgXYydH1OLufTWBW1Y4v5ojSWVCTDtkgbZAwEzlgdoANRs2Qof5-YZBmrjPxG8xCBHKBn5JZ9J8YjHtFXV3WP2fpxw6yrtYANigdOq0q4rj7xrylVRd_QrfaYC_S-y1KOvlZeUuq3MymOL]
37. Maynard S.E., Min J.Y., Merchan J., Lim K.H., Li J., Mondal S., Libermann T.A., Morgan J.P., Sellke F.W., Stillman I.E., Epstein F.H., Sukhatme V.P.,Karumanchi S.A. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest, 2003, Vol.111, no 5, pp. 649-58. [10.1172/JCI17189] [https://www.ncbi.nlm.nih.gov/pubmed/12618519
38. https://dm5migu4zj3pb.cloudfront.net/manuscripts/17000/17189/JCI0317189.pdf]
39. Melder R.J., Koenig G.C., Witwer B.P., Safabakhsh N., Munn L.L.,Jain R.K. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med, 1996, Vol.2, no 9, pp. 992-7. [10.1038/nm0996-992] [https://www.ncbi.nlm.nih.gov/pubmed/8782456]
40. Melincovici C.S., Bosca A.B., Susman S., Marginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L.,Mihu C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol, 2018, Vol.59, no 2, pp. 455-467. [https://www.ncbi.nlm.nih.gov/pubmed/30173249]
41. Mikhailova V., Khokhlova E., Grebenkina P., Salloum Z., Nikolaenkov I., Markova K., Davidova A., Selkov S.,Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology, 2021, Vol.226, no 5, pp. 152125. [10.1016/j.imbio.2021.152125] [https://www.ncbi.nlm.nih.gov/pubmed/34365089]
42. Naderan M., Sabzevary M., Rezaii K., Banafshehafshan A.,Hantoushzadeh S. Intravitreal anti-vascular endothelial growth factor medications during pregnancy: current perspective. Int Ophthalmol, 2021, Vol.41, no 2, pp. 743-751. [10.1007/s10792-020-01610-2] [https://www.ncbi.nlm.nih.gov/pubmed/33044671]
43. Nickel J., Ten Dijke P.,Mueller T.D. TGF-beta family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai), 2018, Vol.50, no 1, pp. 12-36. [10.1093/abbs/gmx126] [https://www.ncbi.nlm.nih.gov/pubmed/29293886]
44. Papadopoulos N., Martin J., Ruan Q., Rafique A., Rosconi M.P., Shi E., Pyles E.A., Yancopoulos G.D., Stahl N.,Wiegand S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis, 2012, Vol.15, no 2, pp. 171-85. [10.1007/s10456-011-9249-6] [https://www.ncbi.nlm.nih.gov/pubmed/22302382]
45. Rajagopalan S.,Long E.O. KIR2DL4 (CD158d): An activation receptor for HLA-G. Front Immunol, 2012, Vol.3, no, pp. 258. [10.3389/fimmu.2012.00258] [https://www.ncbi.nlm.nih.gov/pubmed/22934097
46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422731/pdf/fimmu-03-00258.pdf]
47. Sandler A., Gray R., Perry M.C., Brahmer J., Schiller J.H., Dowlati A., Lilenbaum R.,Johnson D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006, Vol.355, no 24, pp. 2542-50. [10.1056/NEJMoa061884] [https://www.ncbi.nlm.nih.gov/pubmed/17167137]
48. Scherner O., Meurer S.K., Tihaa L., Gressner A.M.,Weiskirchen R. Endoglin differentially modulates antagonistic transforming growth factor-beta1 and BMP-7 signaling. J Biol Chem, 2007, Vol.282, no 19, pp. 13934-43. [10.1074/jbc.M611062200] [https://www.ncbi.nlm.nih.gov/pubmed/17376778]
49. Schiessl B., Innes B.A., Bulmer J.N., Otun H.A., Chadwick T.J., Robson S.C.,Lash G.E. Localization of angiogenic growth factors and their receptors in the human placental bed throughout normal human pregnancy. Placenta, 2009, Vol.30, no 1, pp. 79-87. [10.1016/j.placenta.2008.10.004] [https://www.ncbi.nlm.nih.gov/pubmed/19010534]
50. Sharkey A.M., Charnock-Jones D.S., Boocock C.A., Brown K.D.,Smith S.K. Expression of mRNA for vascular endothelial growth factor in human placenta. J Reprod Fertil, 1993, Vol.99, no 2, pp. 609-15. [10.1530/jrf.0.0990609] [https://www.ncbi.nlm.nih.gov/pubmed/8107046]
51. Sharma S., Godbole G.,Modi D. Decidual Control of Trophoblast Invasion. Am J Reprod Immunol, 2016, Vol.75, no 3, pp. 341-50. [10.1111/aji.12466] [https://www.ncbi.nlm.nih.gov/pubmed/26755153
52. https://onlinelibrary.wiley.com/doi/full/10.1111/aji.12466
53. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/aji.12466?download=true]
54. Simons M., Gordon E.,Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol, 2016, Vol.17, no 10, pp. 611-25. [10.1038/nrm.2016.87] [https://www.ncbi.nlm.nih.gov/pubmed/27461391
55. https://www.nature.com/articles/nrm.2016.87.pdf]
56. Tan H.X., Yang S.L., Li M.Q.,Wang H.Y. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion. Cell Commun Signal, 2020, Vol.18, no 1, pp. 73. [10.1186/s12964-020-00579-w] [https://www.ncbi.nlm.nih.gov/pubmed/32398034
57. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218578/pdf/12964_2020_Article_579.pdf]
58. Trembath A.P.,Markiewicz M.A. More than Decoration: Roles for Natural Killer Group 2 Member D Ligand Expression by Immune Cells. Front Immunol, 2018, Vol.9, no, pp. 231. [10.3389/fimmu.2018.00231] [https://www.ncbi.nlm.nih.gov/pubmed/29483917]
59. Vinnars M.T., Bjork E., Nagaev I., Ottander U., Bremme K., Holmlund U., Sverremark-Ekstrom E.,Mincheva-Nilsson L. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol, 2018, Vol.80, no 1, pp. e12969. [10.1111/aji.12969] [https://www.ncbi.nlm.nih.gov/pubmed/29741244]
60. Wallace A.E., Fraser R.,Cartwright J.E. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update, 2012, Vol.18, no 4, pp. 458-71. [10.1093/humupd/dms015] [https://www.ncbi.nlm.nih.gov/pubmed/22523109
61. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373213/pdf/dms015.pdf]
62. Waltenberger J., Claesson-Welsh L., Siegbahn A., Shibuya M.,Heldin C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem, 1994, Vol.269, no 43, pp. 26988-95. [https://www.ncbi.nlm.nih.gov/pubmed/7929439
63. https://www.sciencedirect.com/science/article/pii/S0021925818471165?via%3Dihub]
64. Wang J., Ding J., Zhang S., Chen X., Yan S., Zhang Y.,Yin T. Decreased USP2a Expression Inhibits Trophoblast Invasion and Associates With Recurrent Miscarriage. Front Immunol, 2021, Vol.12, no, pp. 717370. [10.3389/fimmu.2021.717370] [https://www.ncbi.nlm.nih.gov/pubmed/34489969]
65. Wang X.Q., Zhou W.J., Hou X.X., Fu Q.,Li D.J. Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal-fetal interface. Cell Mol Immunol, 2018, Vol.15, no 12, pp. 1038-1046. [10.1038/s41423-018-0019-x] [https://www.ncbi.nlm.nih.gov/pubmed/29588487
66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269500/pdf/41423_2018_Article_19.pdf]
67. Wu D., Luo S., Wang Y., Zhuang L., Chen Y.,Peng C. Smads in human trophoblast cells: expression, regulation and role in TGF-beta-induced transcriptional activity. Mol Cell Endocrinol, 2001, Vol.175, no 1-2, pp. 111-21. [10.1016/s0303-7207(01)00397-5] [https://www.ncbi.nlm.nih.gov/pubmed/11325521]
68. Yang F., Zheng Q.,Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol, 2019, Vol.10, no, pp. 2317. [10.3389/fimmu.2019.02317] [https://www.ncbi.nlm.nih.gov/pubmed/31681264
69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813251/pdf/fimmu-10-02317.pdf]
70. Yi Y., Cheng J.C., Klausen C.,Leung P.C.K. TGF-beta1 inhibits human trophoblast cell invasion by upregulating cyclooxygenase-2. Placenta, 2018, Vol.68, no, pp. 44-51. [10.1016/j.placenta.2018.06.313] [https://www.ncbi.nlm.nih.gov/pubmed/30055669]
71. Zhao J., Schlosser H.A., Wang Z., Qin J., Li J., Popp F., Popp M.C., Alakus H., Chon S.H., Hansen H.P., Neiss W.F., Jauch K.W., Bruns C.J.,Zhao Y. Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer. Cancers (Basel), 2019, Vol.11, no 6. [10.3390/cancers11060874] [https://www.ncbi.nlm.nih.gov/pubmed/31234517]
72. Zhou Y., McMaster M., Woo K., Janatpour M., Perry J., Karpanen T., Alitalo K., Damsky C.,Fisher S.J. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol, 2002, Vol.160, no 4, pp. 1405-23. [10.1016/S0002-9440(10)62567-9] [https://www.ncbi.nlm.nih.gov/pubmed/11943725
73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277330/pdf/3098.pdf]
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Other | |
Download
(389KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(20KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(12KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(419KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(20MB)
|
Indexing metadata ▾ |
![]() |
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17MB)
|
Indexing metadata ▾ |
![]() |
9. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(33KB)
|
Indexing metadata ▾ |
![]() |
10. 2991 | |
Subject | ||
Type | Other | |
Download
(544KB)
|
Indexing metadata ▾ |
Review
For citations:
Tyshchuk E.V., Denisova E.A., Marko O.B., Kogan I.Yu., Selkov S.A., Sokolov D.I. VEGF DEPRIVATION AFFECTS ENDOGLIN EXPRESSION IN TROPHOBLAST CELLS AND NATURAL KILLERS. Medical Immunology (Russia). https://doi.org/10.15789/10.15789/1563-0625-VDA-2991