Сhanges of the functional phenotype of circulating monocytes during pregnancy
https://doi.org/10.15789/1563-0625-COT-2990
Abstract
Rearrangement of the immune system during pregnancy is a strictly controlled, dynamic process in which the first and third trimesters are, respectively, pro-inflammatory, and anti-inflammatory periods. However, monocyte involvement in regulating the pro/anti-inflammatory balance remains poorly understood. The functional phenotype of monocytes is known to depend on their subsets assessed by CD14 and CD16 expression, and is associated with expression of M1(CCR2)- and M2(CD206) molecules, associated with pro- and anti-inflammatory activity, respectively. Here we have investigated the expression of CCR2 and CD206 in classical (CD14++CD16- , cMo), intermediate (CD14++CD16+, iMo), and non-classical monocytes (CD14+CD16++, nMo) in pregnant women at different gestational ages in comparison with nonpregnant women. The study included 14 pregnant women in the first trimester, 20 in the second trimester, 26 in the third trimester, and 29 fertile non-pregnant women. One-way analysis of variance in these groups revealed significant differences CCR2 and CD206 expression (more pronounced in classical and intermediate monocytes and stronger in relation to CD206 expression). Overall, monocytes from pregnant women had decreased CCR2- and increased CD206 expression, suggesting a shift towards an anti-inflammatory profile. These changes appeared in the first trimester (increased CD206 mean fluorescence intensity [MFI] in cMo and iMo, p < 0.05) and reached their maximum in the second trimester, manifested by significant increase in CD206 and decrease in CCR2 expression (% of cells, MFI) in all monocyte subsets. In the third trimester, CD206+ cMo decreased, as compared to the second trimester (p < 0.05), and the percentage of CCR2+ cMo and iMo increased. Of note, these changes in the first and third trimesters were combined with increased pro-inflammatory expression profile of non-classical monocytes which was restricted by the non-classical monocyte subpopulation in the first trimester, then being mediated by intermediate and non-classical monocytes in the third trimester. The data obtained suggest involvement of monocytes in regulation of the pro- and anti-inflammatory balance during pregnancy, with predominant development of the M2 profile in classical monocytes during the first and third trimesters, and in all monocyte subsets over second trimester, along with increase in the M1 proinflammatory profile of intermediate and non-classical monocytes in the first and third trimesters.
About the Authors
N. G. BukhtuevaRussian Federation
Bukhtueva N.G., Obstetrician-Gynecologist, Obstetric Observational Department No. 1
Novosibirsk
O. Yu. Leplina
Russian Federation
Olga Yu. Leplina, PhD, MD (Medicine), Leading Research Associate, Laboratory of Cellular Immunotherapy
14 Yadrintsevskaya St Novosibirsk 630099
Phone: +7 (383) 228-21-01
Fax: +7 (383) 222-70-28
E. Ya. Shevela
Shevela E.Ya., PhD, MD (Medicine), Leading Research Associate, Laboratory of Cellular Immunotherapy
Novosibirsk
M. A. Tikhonova
Russian Federation
Tikhonova M.A., PhD (Biology), Senior Research Associate, Laboratory of Cellular Immunotherapy
Novosibirsk
N. M. Pasman
Russian Federation
Pasman N.М., PhD, MD (Medicine), Professor, Head, Department of Obstetrics and Gynecology of Institute ofMedicine and Psychology
Novosibirsk
A. A. Ostanin
Russian Federation
Ostanin A.A., PhD, MD (Medicine), Professor, Chief Research Associate, Laboratory of Cellular Immunotherapy
Novosibirsk
E. R. Chernykh
Russian Federation
Chernykh E.R., PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Cellular Immunotherapy
Novosibirsk
References
1. Shevela E.Ya., Bukhtueva N.G., Tikhonova M.A., Sakhno L.V., Pasman N.M., Chernykh E.R. Expression of arginase 1 and tyrosine kinase Mer by blood monocytes in the dynamics of physiological pregnancy. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 3, pp. 507-512. (In Russ.)
2. Shevela E.Ya., Sakhno L.V., Maksimova A.A., Tikhonova M.A., Ostanin A.A., Chernykh E.R. Expression of Arg1 and MerTK by human macrophages activated by M2-polarizing stimuli and their role in determining low allostimulatory activity. Immunologiya = Immunologiya, 2022, Vol. 43, no. 5, pp. 515-524. (In Russ.)
3. Abu-Raya B., Michalski C., Sadarangani M., Lavoie P.M. Maternal immunological adaptation during normal pregnancy. Front Immunol., 2020, Vol. 11, 575197. doi: 10.3389/fimmu.2020.575197.
4. Alahakoon T.I., Medbury H., Williams H., Fewings N., Wang X.M., Lee V.W. Distribution of monocyte subsets and polarization in preeclampsia and intrauterine fetal growth restriction. J. Obstet. Gynaecol. Res., 2018, Vol. 44, no. 12, pp. 2135-2148.
5. Aldo P.B., Racicot K., Craviero V., Guller S., Romero R., Mor G. Trophoblast induces monocytes differentiation in to CD14+/CD16+ macrophages. Am. J. Reprod. Immunol., 2014, Vol. 72, no. 3, pp. 270-284.
6. Al Ofi E., Coffelt S. Monocyte subpopulations in pregnancy complicated by pre-eclampsia demonstrate a pro-inflammatory phenotype and altered angiogenesis, chemotaxis and migration. ADC Fetal. Neonatal., 2012, Vol. 97, Suppl. 1. doi: 10.1136/fetalneonatal-2012-301809.7.
7. Bjorkander S., Heidari-Hamedani G., Bremme K., Gunnarsson I., Holmlund U. Peripheral monocytes expression of the chemokines receptors CCR2, CCR5 and CXCR3 is altered at parturition in healthy women and in women with systemic lupus erythematosus. Scand. J. Immunol., 2013, Vol. 77, no. 3, pp. 200-212.
8. Cai B., Kasikara C., Doran A.C., Ramakrishnan R., Birge R.B., Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal., 2018, Vol. 11, aar 3721. doi: 10.1126/scisignal.aar3721.
9. Cao Y., Fan Y., Li F., Hao Y., Kong Y., Chen C., Hao X., Han D., Li G., Wang Z., Song C., Han J., Zeng H. Phenotypic and functional alterations of monocyte subsets with aging. Immun. Ageing, 2022, Vol. 19, 63. doi: 10.1186/s12979-022-00321-9.
10. Chen D., Wang W., Wu L., Liang L., Wang S., Cheng Y., Zhang T., Chai C., Luo Q., Sun C., Zhao W., Lv Z., Gao Y., Wu X., Sun N., Zhang Y., Zhang J., Chen Y., Tong J., Wang X., Bai Y., Sun C., Jin X., Niu J. Single-cell atlas of peripheral blood mononuclear cells from pregnant women. Clin Transl Med., 2022, Vol. 12, no. 5, e821. doi: 10.1002/ctm2.821.
11. Cormican S., Griffin M.D. Human monocytes subset distinctions and function: insights from gene expression analysis. Front. Immunol., 2020, Vol. 11, 1070. doi: 10.3389/fimmu.2020.01070.
12. Cornwell W.D., Kim V., Fan X., Vega M.E., Ramsey F.V., Criner G.J., Rogers T.J. Activation and polarization of circulating monocytes in severe chronic obstructive pulmonary disease. BMC Pulm. Med., 2018, Vol. 18, 101. doi: 10.1186/s12890-018-0664-y.
13. Costantini A., Viola N., Berretta A., Galeazzi R., Matacchione G., Sabbatinelli J., Storci G., De Matteis S., Butini L., Rippo M.R., Procopio A.D., Caraceni D., Antonicelli R., Olivieri F., Bonafè M. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging, 2018, Vol. 10, no. 6, pp. 1268-1280.
14. Dutta S., Sengupta P. Defining pregnancy phases with cytokine shift. J. Pregnancy Reprod., 2017, Vol. 1, no. 4, pp. 1-3.
15. Evans H.G., Gullick N.J., Kelly S., Pitzalis C., Lord G.M., Kirkham B.W., Taams L.S. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc. Natl Acad. Sci. USA, 2009, Vol. 106, pp. 6232-6237.
16. Faas M.M., de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J. Reprod. Immunol., 2017, Vol. 119, pp. 91-97.
17. Faas M.M., Spaans F., de Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front. Immunol., 2014, Vol. 5, 298. doi: 10.3389/fimmu.2014.00298.
18. Fadini G.P., Simoni F., Cappellari R., Vitturi N., Galasso S., de Kreutzenberg S.V., Previato L., Avogaro A. Proinflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis, 2014, Vol. 237, no. 2, pp. 805-808.
19. Fadini G.P., de Kreutzenberg S.V., Boscaro E., Albiero M., Cappellari R., Kränkel N., Landmesser U., Toniolo A., Bolego C., Cignarella A., Seeger F., Dimmeler S., Zeiher A., Agostini C., Avogaro A. An unbalanced monocytes polarization in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia, 2013,Vol. 56, no. 8, pp. 1856-1866.
20. Fernández-Regueras M., Carbonell C., Salete-Granado D., García J-L., Gragera M., Pérez-Nieto M.-Á., Morán-Plata F.-J., Mayado A., Torres J.-L., Corchete L.-A., Usategui-Martín R., Bueno-Martínez E., Rojas-Pirela M., Sabio G., González-Sarmiento R., Orfao A., Laso F.-J., Almeida J., Marcos M. Predominantly pro-inflammatory phenotype with mixed M1/M2 polarization of peripheral blood classical monocytes and monocyte-derived macrophages among patients with excessive ethanol intake. Antioxidants, 2023, Vol. 12, 1708. doi: 10.3390/antiox12091708.
21. Fukui S., Iwamoto N., Takatani A., Igawa T., Shimizu T., Umeda M., Nishino A., Horai Y., Hirai Y., Koga T., Kawashiri S.-Y., Tamai M., Ichinose K., Nakamura H., Origuchi T., Masuyama R., Kosai K., Yanagihara K., Kawakami A. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 mnocytes to osteoclastogenesis. Front. Immunol., 2018, Vol. 8, 1958. doi: 10.3389/fimmu.2017.01958.
22. Germain S.J., Sacks G.P., Sooranna S.R., Sargent I.L., Redman C.W. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J. Immunol., 2007, Vol. 178, no. 9, pp. 5949-5956.
23. Gong F., Wang J., Lu N., Wang J., Wang J., Shi X., Cui M., Cui L. The imbalance of circulating monocyte subgroups with a higher proportion of the CD14+CD16+CD163+ phenotype in patients with preeclampsia. Immunol. Lett., 2023, Vol. 253, pp. 1-7.
24. Hou J., Zhang M., Ding Y., Wang X., Li T., Gao P., Jiang Y. Circulating CD14+CD163+CD206+ M2 monocytes are increased in patients with early stage of idiopathic membranous nephropathy. Mediators Inflamm., 2018, Vol. 2018, 5270657. doi: 110.1155/2018/5270657.
25. Italiani P., Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. Front. Immunol., 2014, Vol. 5, 514. doi: 10.3389/fimmu.2014.00514.
26. Jarmund A.H., Giskeodegard G.F., Ryssdal M., Steinkjer B., Stokkeland L.M.T., Madssen T.S., Stafne S.N., Stridsklev S., Moholdt T., Heimstad R., Vanky E., Iversen A.-C. Cytokine patterns in maternal serum from first trimester to term and beyond. Front. Immunol., 2021, Vol. 12, 752660. doi: 10.3389/fimmu.2021.752660.
27. Kapellos T.S., Bonaguro L., Gemünd I., Reusch N., Saglam A., Hinkley E.R., Schultze J.L. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol., 2019, Vol. 10, 2035. doi: 10.3389/ fimmu.2019.02035.
28. Kiss M., Caro A.A., Raes G., Laoui D. Systemic reprogramming of monocytes in cancer. Front. Oncol., 2020, Vol. 10, 1399. doi: 10.3389/fonc.2020.01399.
29. Koldehoff M., Cierna B., Steckel N.K., Beelen D.W., Elmaagacli A.H. Maternal molecular features and gene profiling of monocytes during first trimester pregnancy. J. Reprod. Immunol., 2013, Vol. 99, pp. 62-68.
30. Lampe R., Kover Á., Szucs S., Pal L., Arnyas E., Adany R., Poka R. Phagocytic index of neutrophils granulocytes and monocytes in healthy and preeclamptic pregnancy. J. Reprod. Immunol., 2015, Vol. 107, pp. 26-30.
31. Lehman N., Kowalska W., Zarobkiewicz M., Mazurek M., Mrozowska K., Bojarska-Junak A., Rola R. Provs anti-inflammatory features of monocyte subsets in glioma patients. Int. J. Mol. Sci., 2023, Vol. 24, no. 3, 1879. doi: 10.3390/ijms24031879.
32. Liu X., Zhu L., Huang Z., Li Z., Duan R., Li H., Xie L., Chen X., Ding W., Chen B., Gao Y., Su J., Wang X., Su W. A dynamic peripheral immune landscape during human pregnancy. Fundamental Res., 2022, Vol. 15, 44. doi: 10.1016/j.fmre.2022.06.011.
33. Li X., Du N., Xu G., Zhang P., Dang R., Jiang Y., Zhang K. Expression of CD206 and CD163 on intermediate CD14++CD16+ monocytes are increased in hemorrhagic fever with renal syndrome and are correlated with disease severity. Virus Res., 2018, Vol. 253, pp. 92-102.
34. Matic S., Popovic S., Djurdjevic P., Todorovic D., Djordjevic N., Mijailovic Z., Sazdanovic P., Milovanovic D., Zecevic D.R., Petrovic M., Sazdanovic M., Zornic N., Vukicevic V., Petrovic I., Matic S., Vukicevic M.K., Baskic D. SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocytes subsets. PLoS One, 2020, Vol. 15, no. 12, e0241097. doi: 10.1371/journal.pone.0241097.
35. Min D., Brooks B., Wong J., Aamidor S., Seehoo R., Sutanto S., Harrisberg B., Yue D.K., Twigg S.M., McLennan S.V. Monocyte CD163 is altered in association with diabetic complications: possible protective role. J. Leukoc. Biol., 2016, Vol. 100, no. 6, pp. 1375-1383.
36. Mohamed M.E., Gamal R.M., El-Mokhtar M.A., Hassan A.T., Abozaid H.S.M., Ghandour A.M., Ismail S.A.A., Yousef H.A., El-Hakeim E.H., Makarem Y.S., Awad A.A. Peripheral cells from patients with systemic sclerosis disease co-expressing M1 and M2 monocyte/macrophage surface markers: relation to the degree of skin involvement. Hum. Immunol., 2021, Vol. 82, no. 9, pp. 634-639.
37. Munder M. Arginase: an emerging key player in the mammalian immune system. Brit. J. Pharmacol., 2009, Vol. 158, pp. 638-651.
38. Murray P.J. Immune regulation by monocytes. Semin. Immunol., 2018, Vol. 35, pp. 12-18.
39. Nielsen M.C., Hvidbjerg Gantzel R., Claria J., Trebicka J., Moller H.J., Gronbak H. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure. Cells, 2020, Vol. 9, 1175. doi: 10.3390/cells9051175.
40. Pflitsch C., Feldmann C.N., Richert L., Hagen S., Diemert A., Goletzke J., Hecher K., Jazbutyte V., Renné T., Arck P.C., Altfeld M., Ziegler S. In-depth characterization of monocytes subsets during the course of healthy pregnancy. J. Reprod. Immunol., 2020, Vol. 141, 103151. doi: 10.1016/j.jri.2020.103151.
41. Rees A., Jenkins B.J., Angelini R., Davies L.C., Cronin J.G., Jones N., Thornton C.A. Immunometabolic adaptation in monocytes underpins functional changes during pregnancy. Lancet, 2023. doi: 10.2139/ssrn.4570469.
42. Sacks G.P., Redman C.W., Sargent I.L. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin. Exp. Immunol., 2003, Vol. 131, no. 3, pp. 490-497.
43. Sharma S., Rodrigues P.R.S., Zaher S., Davies L.C., Ghazal P. Immune-metabolic adaptations in pregnancy: A potential stepping-stone to sepsis. EBioMedicine, 2022, Vol. 86, 104337. doi: 10.1016/j.ebiom.2022.104337.
44. Spaans F., Vos P.D., Bakker W.W., van Goor H., Faas M.M. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension, 2014, Vol. 63, no. 6, pp. 1154-1160.
45. Sureshchandra S. Marshall N.E., Mendoza N., Jankeel A., Zulu M.Z., Messaoudi I. Functional and genomic adaptations of blood monocytes to pregravid obesity during pregnancy. iScience, 2021, Vol. 24, no. 6, 102690. doi: 10.1016/j.isci.2021.102690.
46. Trombetta A.C., Soldano S., Contini P., Tomatis V., Ruaro B., Paolino S., Brizzolara R., Montagna P., Sulli A., Pizzorni C., Smith V., Cutolo M. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir. Res., 2018, Vol. 19, 186. doi:10.1186/s12931-018-0891-z.
47. Vago J.P., Amaral F.A., van de Loo F.A.J. Resolving inflammation by TAM receptor activation. Pharmacol. Ther., 2021, Vol. 227, 107893. doi: 10.1016/j.pharmthera.2021.107893
48. van Nieuwenhoven A.L.V., Bouman A., Moes H., Heineman M.J., de Leij L.F.М.Н., Santema J., Faas M.M. Endotoxin-induced cytokine production of monocytes of third-trimester pregnant women compared with women in the follicular phase of the menstrual cycle. Am. J. Obstet. Gynecol., 2003, Vol. 188, no. 4, pp. 1073-1077.
49. Weber M.S., Prod’homme T., Youssef S., Dunn S.E., Rundle C.D., Lee L., Patarroyo J.C., Stüve O., Sobel R.A., Steinman L., Zamvil S.S. Type II monocytes modulate Tcell-mediated central nervous system autoimmune disease. Nat. Med., 2007, Vol. 13, no. 8, pp. 935-943.
50. Zhang B., Cao M., He Y., Liu Y., Zhang G., Yang C., Du Y., Xu J., Hu J., Gao F. Increased circulating M2-like monocytes in patients with breast cancer. Tumour Biol., 2017, Vol. 39, no. 6, 1010428317711571. doi: 10.1177/1010428317711571.
51. Zhang J., Shynlova O., Sabra S., Bang A., Briollais L., Lye S.J. Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm. J. Cell. Mol. Med., 2017, Vol. 21, no. 10, pp. 2386-2402.
52. Zhang Y., Liu Z., Sun H. Fetal-maternal interactions during pregnancy: a ‘three-in-one’ perspective. Front. Immunol., 2023, Vol. 14, 1198430. doi: 10.3389/fimmu.2023.1198430.
53. Ziegler S.M., Feldmann C.N., Hagen S.H., Richert L., Barkhausen T., Goletzke J., Jazbutyte V., Martrus G., Salzberger W., Renné T., Hecher K., Diemert A., Arck P.C., Altfeld M. Innate immune responses to toll-like receptor stimulation are altered during the course of pregnancy. J. Reprod. Immunol., 2018, Vol. 128, pp. 30-37.
54. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J.M., Liu Y.-J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, pp. e74-e80.
Supplementary files
Review
For citations:
Bukhtueva N.G., Leplina O.Yu., Shevela E.Ya., Tikhonova M.A., Pasman N.M., Ostanin A.A., Chernykh E.R. Сhanges of the functional phenotype of circulating monocytes during pregnancy. Medical Immunology (Russia). 2025;27(1):179-196. (In Russ.) https://doi.org/10.15789/1563-0625-COT-2990