Influenza vaccine is able to induce post-infection antibodies to SARS-CoV-2 in medical staff
https://doi.org/10.15789/1563-0625-IVI-2982
Abstract
Influenza vaccination contributes to the favorable course and outcome of COVID-19. The aim of our study was to study the effect of influenza and pneumococcal vaccines on the level of IgG antibodies (AT) to SARS-CoV-2 among medical personnel at the beginning of the COVID-19 pandemic. We present the data on assessment of specific immune response to the influenza virus and SARS-CoV-2 in 266 medical workers 6 months after immunization against influenza and/or pneumococcal infection (without vaccinations against COVID-19) over the 2020-2021, by comparing the results with respective characteristic in 281 employees with no history of vaccinations is presented.
We have found that the proportion of medical workers with a protective (≥ 1:40) antibody levels to influenza virus 6 months after vaccination in groups of participants reaches a protective (≥ 70%) value only in persons who received a monovaccine against pneumococcal infection (78.6%) as compared with persons vaccinated with a monovaccine against influenza (61.7%) (p < 0.001), as well as with a group of workers immunized against influenza in combination with the S. pneumoniae vaccine (68.9%) (p < 0.01). Hence, the pneumococcal vaccine is able to induce the synthesis of IgG-AT to influenza virus reaching protective values.
An analysis of the group with seropositivity to influenza virus (IgG-AT ≥ 1:10) and their comparisons with persons seroprevalent to COVID-19 showed that the proportion of seropositive individuals among medical staff vaccinated against seasonal influenza after 6 months (indicating a probable asymptomatic form of COVID-19) is increased. It comprised 65.4% (p = 0.026) in the group vaccinated with mono-flu, and 64.5% (p = 0.04) in the group vaccinated with combined influenza and pneumococcus, being higher than among the non-immunized workers (48.8%).
In summary, the results of our study show that influenza vaccination acts as an inducer of humoral immunity not only to the influenza virus, but also to the recently transmitted SARS-CoV-2 infection.
About the Authors
M. P. KostinovRussian Federation
Kostinov M.P., PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Vaccine Prophylaxis and Immunotherapy of Allergic Diseases; Head, Department of Epidemiology and Modern Vaccination Technologies of the Professional Education
Moscow
N. Yu. Nastaeva
Russian Federation
Nastaeva N.Yu., Epidemiologist
Novorossiysk
N. F. Nikityuk
Russian Federation
Nikityuk N.F., PhD, MD (Medicine), Professor, LeadingResearch Associate, Laboratory of Vaccine Prophylaxis and Immunotherapy of Allergic Diseases; Lecturer, Department of Epidemiology and Modern Vaccination Technologies of the Professional Education Institute
Moscow
N. K. Akhmatova
Russian Federation
Akhmatova N.K., PhD, MD (Medicine), Professor, Leading Research Associate, Laboratory of Immunity Regulation Mechanisms
Moscow
M. I. Albahansa
Russian Federation
Albahansa Mana Yvette, Postgraduate Student, Department of Epidemiology and Modern Vaccination Technologies of Professional Education Institute
Moscow
S. V. Yushkova
Russian Federation
Yushkova S.V., Postgraduate Student, Department of Epidemiology and Modern Vaccination Technologies of Professional Education Institute
Moscow
N. P. Andreeva
Russian Federation
Andreeva N.P., PhD (Medicine), Associate Professor, Department of Health Organization and Information Technologies in Medicine; Allergologist-Immunologist; Chief Freelance Pediatric Specialist Allergologist-Immunologist of the Ministry of Health of the Chuvash Republic
Cheboksary, Chuvash Republic
A. M. Kostinova
Russian Federation
Kostinova A.M., PhD (Medicine), Assistant Professor, Department of Epidemiology and Modern Vaccination Technologies of the Institute of Professional Education
Moscow
A. V. Linok
Russian Federation
Linok A.V., PhD (Medicine), Associate Professor, Department of Epidemiology and Modern Vaccination Technologies of the Institute of Professional Education; Research Associate, Laboratory for Epidemiological Analysis and Monitoring of Infectious Diseases
Moscow
M. N. Loktionova
Russian Federation
Loktionova M.N., PhD (Medicine), Associate Professor, Department of Epidemiology and Modern Vaccination Technologies of the Professional Education Institute
Moscow
I. A. Khrapunova
Russian Federation
Khrapunova I.A., PhD, MD (Medicine), Professor, Department of Epidemiology and Modern Vaccination Technologies of the Institute of Professional Education
Moscow
References
1. Methodological guidelines MU 3.3.2.1758-03. 3.3.2. Medical immunobiological preparations. Methods for determining the quality indicators of immunobiological preparations for the prevention and diagnosis of influenza]. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2009. 14 p. [Electronic resource]. Available at: https://www.rospotrebnadzor.ru/upload/iblock/951/mu-3.3.2.2437_09.pdf.
2. Popova A.Yu., Ezhlova E.B., Melnikova A.A., Bashketova N.S., Fridman R.K., Lyalina L.V., Smirnov V.S., Chkhindzherya I.G., Grechaninova T.A., Agapov K.A., Arsentieva N.A., Bazhenova N.A., Batsunov O.K., Danilova E.M., Zueva E.V., Komkova D.V., Kuznetsova R.N., Lyubimova N.E., Markova A.N., Khamitova I.V., Vetrov V.V., Milichkina A.M., Dedkov V.G., Totolian A.A. Seroprevalence to SARS-CoV-2 virus among population in Saint-Petersburg in the active phase of the epidemic COVID-19. COVID19PREPRINTS.MICROBE.RU.2020. (In Russ.)
3. Khromova E.A., Akhmatova N.K., Kostinov M.P., Skhodova S.A., Stolpnikova V.N., Vlasenko A.E., Polishchuk V.B., Shmitko A.D. The impact of adjuvanted and non-adjuvanted influenza vaccines on in vitrolymphocyte immunophenotype. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, Vol. 13, no. 3, pp. 430-438. doi: 10.15789/2220-7619- TIO-1250.
4. Almazán N.M., Rahbar A., Carlsson M., Hoffman T., Kolstad L., Rönnberg B., Pantalone M.R., Fuchs I.L., Nauclér A., Ohlin M., Sacharczuk M., Religa P., Amér S., Molnár C., Lundkvist A., Susrud A., Sörensen B., SöderbergNauclér C. Influenza A H1N1-mediated pre-existing immunity to SARS-CoV-2 predicts COVID-19 outbreak dynamics. medRxiv, 2022. doi: 10.1101/2021.12.23.21268321.
5. Arts R.J.W., Moorlag S.J.C.F.M., Novakovic B., Li Y., Wang S.-Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., Reusken C.B.E.M., Benn C.S.,Aaby P., Koopmans M.P.,Stunnenberg H.G., van Crevel R., Netea M.G. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe, 2018, Vol. 23, no. 1, pp. 89-100e5.
6. Bekkering S., Domínguez-Andrés J., Joosten L.A.B., Riksen N.P., Netea M.G. Trained immunity: Reprogramming innate immunity in health and disease. Annu. Rev. Immunol., 2021, Vol. 39, pp.667-693.
7. Candelli M., Pignataro G., Torelli E., Gullì A., Nista E.C., Petrucci M., Saviano A., Marchesini D., Covino M., Ojetti V., Antonelli M., Gasbarrini A., Franceschi F. Effect of influenza vaccine on COVID-19 mortality: a retrospective study. Intern. Emerg. Med., 2021, Vol. 16, no. 7, pp. 1849-1855.
8. Conlon A., Ashur C., Washer L., Eagle K.A., Hofmann Bowman M.A. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am. J. Infect. Control, 2021, Vol. 49, no. 6, pp. 694-700.
9. Debisarun P.A., Gössling K.L., Bulut O., Kilic G., Zoodsma M., Liu Z., Oldenburg M., Rüchel N., Zhang B., Xu C.J., Struycken P., Koeken V.A.C.M., Domínguez-Andrés J., Moorlag S.J.C.F.M., Taks E., Ostermann P.N., Müller L., Schaal H., Adams O., Borkhardt A., Oever J.T., Crevel R.V., Li Y., Netea M.G. Induction of trained immunity by influenza vaccination – impact on COVID-19. PLoS Pathog., 2021, Vol. 17, e1009928. doi: 10.1371/journal.ppat.1009928.
10. Domnich A., Orsi A., Trombetta C.S., Guarona G., Panatto D., Icardi G. COVID-19 and seasonal influenza vaccination: cross-protection, co-administration, combination vaccines, and hesitancy. Pharmaceuticals, 2022, Vol. 15, no. 3, 322. doi: 10.3390/ph15030322.
11. Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl Acad. Sci. USA, 2020, Vol. 117, no. 30, pp. 17720-17726.
12. Greco M., Cucci F., Portulano P., Lazzari R.A., Caldararo C., Sicuro F., Catanese C., Lobreglio G. Effects of Influenza Vaccination on the Response to BNT162b2 Messenger RNA COVID-19 Vaccine in Healthcare Workers. J. Clin. Med. Res., 2021, Vol. 13, pp. 549-555.
13. Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A.B., Ifrim D.C., Saeed S., Jacobs C., van Loenhout J., de Jong D., Stunnenberg H.G., Xavierg R.J., van der Meera J.W.M., van Crevela R., Neteaa M.G. Bacille Calmette-Guérin Induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA, 2012, Vol. 109, pp. 17537-17542.
14. Kovačić D., Gajić A.A., Latinović D., Softić A. Hypothetical immunological and immunogenetic model of heterogenous effects of BCG Vaccination in SARS-CoV-2 infections: BCG-induced trained and heterologous immunity. J. Med. Sci., 2021, Vol. 90, e551. doi: 10.20883/medical.e551.
15. Marín-Hernández D., Nixon D.F., Hupert N. Heterologous vaccine interventions: Boosting immunity against future pandemics. Mol. Med. 2021, Vol. 27, no. 1, 54. doi: 10.1186/s10020-021-00317-z.
16. Murchu E.O., Byrne P., Carty P.G., Gascun C.D., Keogan M., O’Neill M., Harrington P., Ryan M. Quantifying the Risk of SARS-CoV-2 Reinfection over Time. Rev. Med. Virol., 2022, Vol. 32, e2260. doi: 10.1002/rmv.2260.
17. Murugavelu P., Reshma Perween R., Shrivastava T., Singh V., Parray H.A., Singh S., Chiranjivi A.K., Thiruvengadam R., Singh S., Yadav N., Jakhar K., Sonar S., Mani S., Bhattacharyya S., Sharma C., Vishwakarma P., Khatri R., Panchal A.K., Das S., Ahmed S., Samal S., Kshetrapal P., Bhatnagar S., Luthra K., Kumar R. Non-neutralizing SARS-CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int. Immunopharmacol., 2021, Vol. 99, 108020. doi: 10.1016/j.intimp.2021.108020.
18. Netea M.G., Domínguez-Andrés J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E., Joosten L.A.B., van der Meer J.W.M., Mhlanga M.M., Mulder W.J.M., Riksen N.P., Schlitzer A., Schultze J.L., Benn C.S., Sun J.C., Xavier R.J., Latz E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, Vol. 20, pp. 375-388.
19. Pallikkuth S., Williams E., Pahwa R., Hoffer M., Pahwa S. Association of flu specific and SARS-CoV-2 specific CD4 T cell responses in SARS-CoV-2 infected asymptomatic heath care workers. Vaccine, 2021, Vol. 39, no. 41, pp. 6019-6024.
20. Poniedziałek B., Hallmann E., Sikora D., Szymański K., Kondratiuk K., Żurawski J., Rzymsk P., Brydak L. Relationship between Humoral Response in COVID-19 and Seasonal Influenza Vaccination. Vaccines (Basel), 2022, Vol. 10, no. 10, 1621. doi: 10.3390/vaccines10101621.
21. Pontiroli A.E., Scovenna F., Carlini V., Tagliabue E., Martin-Delgado J., Sala L., Tanzi E., Zanoni I. Effect of vaccination against influenza viruses on infection, hospitalization, and death from respiratory COVID-19: A Systematic Review and Meta-Analysis. SSRN, 2023. doi: 10.2139/ssrn.4519551.
22. Puro V., Castilletti C., Agrati C., Goletti D., Leone S., Agresta A., Cimini E., Tartaglia E., Casetti R., Colavita F., Meschi S., Matusali G., Lapa D., Fard S.N., Aiello A., Farrone C., Gallì P., Capobianchi M.R.,Ippolito G. Impact of prior influenza and pneumoccocal vaccines on humoral and cellular response to SARS-CoV-2 BNT162b2 Vaccination. Vaccines, 2021, Vol. 9, 615. doi: 10.3390/vaccines9060615.
23. Sánchez-Ramón S., Conejero L., Netea M.G., Sancho D., Palomares Ó., Subiza J.L. Trained immunity-based vaccines: A new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 2018, Vol. 9, 2936. doi: 10.3389/fimmu.2018.02936.
24. . Su W., Wang H., Sun C., Li N., Guo X., Song Q., Liang Q., Liang M., Ding X., Sun Y. The Association between previous influenza vaccination and COVID-19 infection risk and severity: a systematic review and meta-analysis. Am. J. Prev. Med., 2022, Vol. 63, no. 1, pp. 121-130.
25. van Aalst S., Ludwig I.S., van der Zee R., van Eden W., Broere F. Bystander activation of irrelevant CD4+ T cells following antigen-specific vaccination occurs in the presence and absence of adjuvant. PLoS One, 2017, Vol. 12, e0177365. doi: 10.1371/journal.pone.0177365.
26. Wilcox C.R., Islam N., Dambha-Miller H. Association between influenza vaccination and hospitalisation or all-cause mortality in people with COVID-19: A retrospective cohort study. BMJ Open Respir. Res., 2021 Vol. 8, no. 1, e000857. doi: 10.1136/bmjresp-2020-000857.
Supplementary files
Review
For citations:
Kostinov M.P., Nastaeva N.Yu., Nikityuk N.F., Akhmatova N.K., Albahansa M.I., Yushkova S.V., Andreeva N.P., Kostinova A.M., Linok A.V., Loktionova M.N., Khrapunova I.A. Influenza vaccine is able to induce post-infection antibodies to SARS-CoV-2 in medical staff. Medical Immunology (Russia). 2025;27(1):169-178. (In Russ.) https://doi.org/10.15789/1563-0625-IVI-2982