Preview

Медицинская иммунология

Расширенный поиск

Растворимые молекулы иммунных контрольных точек: механизмы образования, функции, роль при злокачественных новообразованиях

https://doi.org/10.15789/1563-0625-SIC-2965

Аннотация

Иммунные контрольные точки (ИКТ) – это обширный комплекс стимулирующих и ингибирующих сигнальных путей, играющих важную роль в точной регулировке иммунных реакций. Традиционно ИКТ считались исключительно связанными с клеточной мембраной системами рецепторов и лигандов, способными запускать или блокировать функционирование иммунных клеток, однако за последнее десятилетие доказано их существование в виде растворимых форм (растворимые молекулы иммунных контрольных точек, или sИКТ). sИКТ – биологически активные регуляторы, участвующие в паракринной и системной модуляции иммунных реакций, подобно цитокинам. В периферической крови здоровых людей присутствуют sИКТ, обладающие свойствами как стимуляторов, так и ингибиторов иммунной системы, и их баланс может нарушаться при многих онкологических заболеваниях, COVID-19, ВИЧ-инфекции. Имеется много данных о связи наличия sИКТ с различными заболеваниями, однако ряд ключевых аспектов их биологии до конца не уточнен. Наиболее широко изучаемыми являются молекулы PD-1 (programmed death receptor-1) и его лиганды PD-L1 и PD-L2, а также CTLA-4 (cytotoxic T lymphocyte antigen-4), TIM-3 (T cell immunoglobulin and mucin-domain containing-3), VISTA (V-domain Ig-containing suppressor of T cell activation). Механизмы образования растворимых форм сложны и разнообразны и включают альтернативный сплайсинг, отщепление мембранных эктодоменов, протеолитическое расщепление. Среди молекулярных механизмов, лежащих в основе синтеза и высвобождения sPD-1 и sPD-L1, наиболее важными являются альтернативный сплайсинг мРНК и трансляция изоформ, лишенных трансмембранных доменов, а образование растворимой формы TIM-3 происходит путем разрезания внеклеточных участков трансмембранных белков посредством протеазы ADAM10. В обзорной статье приведены данные об основных sИКТ, включая sPD-1, sPD-L1, экзосомальный sPD-L1, sCTLA-4 и ряд других. Описаны молекулярные механизмы их образования, биологические функции в поддержании иммунного гомеостаза, а также прогностическое значение изменения их содержания у больных злокачественными новообразованиями (включая немелкоклеточный рак легкого, гепатоцеллюлярный рак, рак молочной железы, рак почки, рак кожи, рак желудка и ряд других), а также при злокачественных заболеваниях системы крови (включая лимфомы, хронический лимфолейкоз, острый миелобластный лейкоз, множественную миелому).

Об авторах

Т. В. Глазанова
ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия

Глазанова Татьяна Валентиновна - д.м.н., главный научный сотрудник научно-исследовательской лаборатории иммунологии

191024, Санкт-Петербург, ул. 2-я Советская, 16

Тел.: 8 (812) 309-79-81



И. Е. Павлова
ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия

Павлова И.Е. – д.м.н., главный научный сотрудник научно-исследовательской лаборатории иммунологии

Санкт-Петербург



Е. В. Кузьмич
ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия

Кузьмич Е.В. – к.м.н., ведущий научный сотрудник научно-исследовательской лаборатории иммунологии

Санкт-Петербург



Л. Н. Бубнова
ФГБУ «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»; ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения РФ
Россия

Бубнова Л.Н. – д.м.н., профессор, заслуженный деятель науки РФ, главный  научный сотрудник научно-исследовательской лаборатории иммунологии; профессор кафедры иммунологии

Санкт-Петербург



Список литературы

1. Asanuma K., Nakamura T., Hayashi A., Okamoto T., Iino T., Asanuma Y., Hagi T., Kita K., Nakamura K., Sudo A. Soluble programmed death-ligand 1 rather than PD-L1 on tumor cells effectively predicts metastasis and prognosis in soft tissue sarcomas. Sci. Rep., 2020, Vol. 10, no. 1, 9077. doi: 10.1038/s41598-020-65895-0.

2. Bailly C., Thuru X., Goossens L., Goossens J.F. Biochemical soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Pharmacology, 2023, Vol. 209, 115445. doi: 10.1016/j.bcp.2023.115445.

3. Bailly C., Thuru X., Quesnel B. Soluble programmed death ligand-1 (sPD-L1): A pool of circulating proteins implicated in health and diseases. Cancers (Basel), 2021, Vol. 13, no. 12, 3034. doi: 10.3390/cancers13123034.

4. Bi X., Wang H., Zhang W., Wang J., Liu W., Xia Z., Huang H., Jiang W., Zhang Y., Wang L. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J. Hematol. Oncol., 2016, Vol. 9, no. 1, 109. doi: 10.1186/s13045-016-0341-7.

5. Bian B., Fanale D., Dusetti N., Roque J., Pastor S., Chretien A.S., Incorvaia L., Russo A., Olive D., Iovanna J. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. OncoImmunology, 2019, Vol. 8, no. 4, e1561120. doi: 10.1080/2162402x.2018.1561120.

6. Chang B., Huang T., Wei H., Shen L., Zhu D., He W., Chen Q., Zhang H., Li Y., Huang R., Li W., Wu P. The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol. Immunother., 2019, Vol. 68, no. 3, pp. 353-363.

7. Chen G., Huang A.C., Zhang W., Zhang G., Wu M., Xu W., Yu Z., Yang J., Wang B., Sun H., Xia H., Man Q., Zhong W., Antelo L.F., Wu B., Xiong X., Liu X., Guan L., Li T., Liu S., Yang R., Lu Y., Dong L., McGettigan S., Somasundaram R., Radhakrishnan R., Mills G., Lu Y., Kim J., Chen Y.H., Dong H., Zhao Y., Karakousis G.C., Mitchell T.C., Schuchter L.M., Herlyn M., Wherry E.J., Xu X., Guo W. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018, Vol. 560, no. 7718, pp. 382-386.

8. Cheng H., Kang P.J., Chuang Y., Wang Y., Jan M., Wu C., Lin C., Liu C., Liaw Y., Lin S., Chen P., Lee S., Yu M. Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One, 2014, Vol. 9, no. 11, e95870. doi: 10.1371/journal.pone.0095870.

9. Cheng Y., Wang C., Wang Y., Dai L. Soluble PD-L1 as a predictive biomarker in lung cancer: A systematic review and meta-analysis. Future Oncol., 2022, Vol. 18, no. 2, pp. 261-273.

10. Cordonnier M., Nardin C., Chanteloup G., Derangere V., Algros M.P., Arnould L., Garrido C., Aubin F., Gobbo J. Tracking the evolution of circulating exosomal-pd-l1 to monitor melanoma patients. J. Extracell. Vesicles, 2020, Vol. 9, no. 1, 1710899. doi: 10.1080/20013078.2019.1710899.

11. Dezutter-Dambuyant C., Durand I., Alberti L., Bendriss-Vermare N., Valladeau-Guilemond J., Duc A., Magron A., Morel A.-P., Sisirak V., Rodriguez C., Cox D., Olive D., Caux D. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology, 2016, Vol. 5, no. 3, e1091146. doi: 10.1080/2162402x.2015.1091146.

12. Ding X., Wang L., Zhu Y., Li Y., Nie S., Yang J., Liang H., Weichselbaum R., Yu J., Hu M. The Change of soluble programmed cell death-ligand 1 in glioma patients receiving radiotherapy and its impact on clinical outcomes. Front. Immunol., 2020, Vol. 11, 580335. doi: 10.3389/fimmu.2020.580335.

13. Dong M., Enomoto M., Le T., Hai H., Hieu V., Hoang D., Iida-Ueno A., Odagiri N., Amano-Teranishi Y., Hagihara A., Fujii H., Uchida-Kobayashi S., Tamori A., Kawada N. Clinical significance of circulating soluble immune checkpoint proteins in sorafenib-treated patients with advanced hepatocellular carcinoma. Sci. Rep., 2020, Vol. 10, no. 1, 3392. doi: 10.1038/s41598-020-60440-5.

14. Elhag O., Hu X.J., Wen-Ying Z., Li X., Yuan Y.Z., Deng L.F., Liu D.L., Liu Y.L., Hui G. Reconstructed adenoassociated virus with the extracellular domain of murine PD-1 induces antitumor immunity. Asian Pac. J. Cancer Prev., 2012, Vol. 13, no. 8, pp. 4031-4036.

15. Enninga E., Harrington S., Creedon D., Ruano R., Markovic S., Dong H., Dronca R. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am. J. Reprod. Immunol., 2018, Vol. 79, no. 2, e12795. doi: 10.1111/aji.12795.

16. Frigola X., Inman B., Krco C.J., Liu X., Harrington S., Bulur P., Dietz A., Dong H., Kwon E. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol. Lett., 2012, Vol. 142, no. 1-2, pp. 78-82.

17. Fu R., Jing C., Li X., Tan Z., Li H. Prognostic significance of serum PD-L1 level in patients with locally advanced or metastatic esophageal squamous cell carcinoma treated with combination cytotoxic chemotherapy. Cancer Manag. Res., 2021, Vol. 13, pp. 4935-4946.

18. Geng H., Zhang G.M., Xiao H., Yuan Y., Li D., Zhang H., Qiu H., He Y.F., Feng Z.H. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer., 2006, Vol. 118, no. 11, pp. 2657-2664.

19. Gu D., Ao X., Yang Y., Chen Z., Xu X. Soluble immune checkpoints in cancer: production, function and biological significance. J. Immunother. Cancer, 2018, Vol. 6, no. 1, 132. doi: 10.1186/s40425-018-0449-0

20. Guo X., Wang J., Jin J., Chen H., Zhen Z., Jiang W., Lin T., Huang H., Xia Z., Sun X. High serum level of soluble programmed death ligand 1 is associated with a poor prognosis in Hodgkin lymphoma. Transl. Oncol., 2018, Vol. 11, no. 3, pp. 779-785.

21. Hassounah N., Malladi V.S., Huang Y., Freeman S.S., Beauchamp E.M., Koyama S., Souders N., Martin S., Dranoff G., Wong K.-K., Pedamallu C.S., Hammerman P.S. Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol. Immunother., 2019, Vol. 68, no. 3, pp. 407-420.

22. He X., Xu L.H., Liu Y. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoformlacking Igv-like domain. Acta Pharmacol. Sin., 2005, Vol. 26, no. 4, pp. 462-468.

23. Hira-Miyazawa M., Nakamura H., Hirai M., Kobayashi Y., Kitahara H., Bou-Gharios G., Kawashiri S.. Regulation of programmed-death ligand in the human head and neck squamous cell carcinoma microenvironment is mediated through matrix metalloproteinase-mediated proteolytic cleavage. Int. J. Oncol., 2018, Vol. 52, no. 2, pp. 379-388.

24. Huang S., Lin H., Lin C.-W., Li C., Yao M., Tang J., Hou H., Tsay W., Chou S., Cheng C., Tien H. Soluble PD-L1: a biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget, 2016, Vol. 7, no. 38, pp. 62490-62502.

25. Incorvaia L., Badalamenti G., Rinaldi G., Iovanna J.L., Olive D., Swayden M., Terruso L., Vincenzi B., Fulfaro F., Bazan V., Russo A., Fanale D. Can the plasma PD-1 levels predict the presence and efficiency of tumor-infiltrating lymphocytes in patients with metastatic melanoma? Ther. Adv. Med. Oncol., 2019, Vol. 11, 1758835919848872. doi: 10.1177/1758835919848872.

26. Kalluri R., LeBleu V.S. The Biology, function, and biomedical applications of exosomes. Science, 2020, Vol. 367, no. 6478, eaau6977. doi: 10.1126/science.aau6977.

27. Keber C., Derigs M., Schultz C., Wegner M., Lingelbach S., Wischmann V., Hofmann R., Denkert C., Hegele A., Hänze J. Cellular and soluble immune checkpoint signaling forms PD-L1 and PD-1 in renal tumor tissue and in blood. Cancer Immunol. Immunother., 2022, Vol. 71, no. 10, pp. 2381-2389.

28. Keir M., Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, Vol. 26, pp. 677-704.

29. Kruger S., Legenstein M.L., Rösgen V., Haas M., Modest D.P., Westphalen C.B., Ormanns S., Kirchner T., Heinemann V., Holdenrieder S., Boeck S. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. OncoImmunology, 2017, Vol. 6, no. 5, e1310358. doi: 10.1080/2162402X.2017.1310358.

30. Landeira-Viñuela A., Arias-Hidalgo C., Juanes-Velasco P., Alcoceba M., Navarro-Bailón A., Pedreira C., Lecrevisse Q., Díaz-Muñoz L., Sánchez-Santos J., Hernández A., García-Vaquero M., Góngora R., De Las Rivas J., González M., Orfao A., Fuentes M. Unravelling soluble immune checkpoints in chronic lymphocytic leukemia: Physiological immunomodulators or immune dysfunction. Front. Immunol., 2022, Vol. 13, 965905. doi: 10.3389/fimmu.2022.965905.

31. Larrinaga G., Solano-Iturri J., Errarte P., Unda M., Loizaga-Iriarte A., Pérez-Fernández A., Echevarría E., Asumendi A., Manini C., Angulo J.C., López J.I. Soluble PD-L1 is an independent prognostic factor in clear cell renal cell carcinoma. Cancers (Basel), 2021, Vol. 13, no. 4, 667. doi: 10.3390/cancers13040667.

32. Li C., Li C., Zhi C., Liang W., Wang X., Chen X., Lv T., Shen Q., Song Y., Lin D., Liu H. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J. Transl. Med., 2019, Vol. 17, no. 1, 355. doi: 10.1186/s12967-019-2101-2.

33. Li J., Shi D., Wan X.C., Hu J., Su Y., Zeng Y., Hu Z., Yu B., Zhang Q., Wei P., Zhou X. Universal extracellular vesicles and PD-L1+ extracellular vesicles detected by single molecule array technology as circulating biomarkers for diffuse large B cell lymphoma. OncoImmunology, 2021, Vol. 10, no. 1, 1995166. doi: 10.1080/2162402x.2021.1995166.

34. Li N., Zhou Z., Li F., Sang J., Han Q., Lv Y., Zhao W., Li C., Liu Z. Circulating soluble programmed death-1 levels may differentiate immune-tolerant phase from other phases and hepatocellular carcinoma from other clinical diseases in chronic hepatitis B virus infection. Oncotarget, 2017, Vol. 8, no. 28, pp. 46020-46033.

35. Li W., Syed F., Yu R., Yang R., Xia Y., Relich R., Russell P., Zhang S., Khalili M., Huang L., Kacena M., Zheng X., Yu Q. Soluble immune checkpoints are dysregulated in COVID-19 and heavy alcohol users with HIV infection. Front. Immunol., 2022, Vol. 13, 833310. doi: 10.3389/fimmu.2022.833310.

36. Li Y., Xiao Y., Su M., Zhang R., Ding J., Hao X., Ma Y. Role of soluble programmed death-1 (sPD-1) and sPD-ligand 1 in patients with cystic echinococcosis. Exp. Ther. Med., 2016, Vol. 11, no. 1, pp. 251-256.

37. Lux A., Kahlert C., Grützmann R., Pilarsky C. C-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer. Int. J. Mol. Sci., 2019, Vol. 20, no. 13, 3305. doi: 10.3390/ijms20133305.

38. Machiraju D., Wiecken M., Lang N., Hülsmeyer I., Roth J., Schank T., Eurich R., Halama N., Enk A., Hassel J.C. Soluble immune checkpoints and T-cell subsets in blood as biomarkers for resistance to immunotherapy in melanoma patients. OncoImmunology, 2021, Vol. 10, no. 1, 1926762. doi: 10.1080/2162402X.2021.1926762.

39. Magistrelli G., Jeannin P., Herbault N., Benoit De Coignac A., Gauchat J.F., Bonnefoy J.Y., Delneste Y. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol., 1999, Vol. 29, no. 11, pp. 3596-3602.

40. Mahoney K., Shukla S.A., Patsoukis N., Chaudhri A., Browne E.P., Arazi A., Eisenhaure T., Pendergraft 3rd W.F., Hua P., Pham H.C., Bu X., Zhu B., Hacohen N., Fritsch E.F., Boussiotis V.A., Wu C.J., Freeman G.J. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol. Immunother., 2019, Vol. 68, no. 3, pp. 421-432.

41. Malinga N., Siwele S., Steel H., Kwofie L., Meyer P., Smit T., Anderson R., Rapoport B., Kgokolo M. Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma. Transl. Oncol., 2022, Vol. 19, 101384. doi: 10.1016/j.tranon.2022.101384.

42. Mazzarella L., Duso B.A., Trapani D., Belli C., D’Amico P., Ferraro E., Viale G., Curigliano G. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review. Eur. J. Cancer, 2019, Vol. 117, pp. 14-31.

43. Meyo T., Jouinot A., Giroux-Leprieur E., Fabre E., Wislez M., Alifano M., Leroy K., Boudou-Rouquette P., Tlemsani C., Khoudour N., Arrondeau J., Thomas-Schoemann A., Blons H., Mansuet-Lupo A., Damotte D., Vidal M., Goldwasser F., Alexandre J., Blanchet B. Predictive value of soluble PD-1, PD-L1, VEGFA, CD40 ligand and CD44 for nivolumab therapy in advanced non-small cell lung cancer: A case-control study. Cancers (Basel), 2020, Vol. 12, no. 2, 473. doi: 10.3390/cancers12020473.

44. Mocan T., Ilies M., Nenu I., Craciun R., Horhat A., Susa R., Minciuna I., Rusu I., Mocan L.P., Seicean A., Iuga C., Hajjar N., Sparchez M., Leucuta D., Sparchez Z. Serum levels of soluble programmed death-ligand 1 (sPD-L1): A possible biomarker in predicting post-treatment outcomes in patients with early hepatocellular carcinoma. Int. Immunopharmacol., 2021, Vol. 94, 107467. doi: 10.1016/j.intimp.2021.107467.

45. Morrissey S., Yan J. Exosomal PD-L1: Roles in tumor progression and immunotherapy. Trends Cancer, 2020, Vol. 6, no. 7, pp. 550-558.

46. Mortensen J., Hansen I.M., Clausen M.R., Bjerre M., Amore F. Elevated pre-therapeutic serum levels of soluble programmed death 1 protein (sPD-1) identify DLBCL patients with adverse prognostic features. Blood, 2017, Vol. 130, Suppl 1, 4148. doi: 10.1182/blood.V130.Suppl_1.4148.4148.

47. Murakami S., Shibaki R., Matsumoto Y., Yoshida T., Goto Y., Kanda S., Horinouchi H., Fujiwara Y., Yamamoto N., Ohe Y. Association between serum level soluble programmed cell death ligand 1 and prognosis in patients with non-small cell lung cancer treated with anti-PD-1 antibody. Thorac. Cancer, 2020, Vol. 11, no. 12, pp. 3585-3595.

48. Ng K., Attig J., Young G.R., Ottina E., Papamichos S.I., Kotsianidis I., Kassiotis G. Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. eLife, 2019, Vol. 8, e50256. doi: 10.7554/eLife.50256.

49. Nielsen C., Ohm-Laursen L., Barington T., Husby S., Lillevang S.T. Alternative splice variants of the human PD-1 gene. Cell. Immunol., 2005, Vol. 235, no. 2, pp.109-116.

50. Niu M., Liu Y., Yi M., Jiao D., Wu K. Biological characteristics and clinical significance of soluble PD-1/ PD-L1 and exosomal PD-L1 in cancer. Front. Immunol., 2022, Vol. 13, 827921. doi: 10.3389/fimmu.2022.827921.

51. Noubissi Nzeteu G., Schlichtner S., David S., Ruppenstein A., Fasler-Kan E., Raap U., Sumbayev V., Gibbs B., Meyer H. Macrophage differentiation and polarization regulate the release of the immune checkpoint protein V-Domain Ig suppressor of T Cell activation. Front. Immunol., 2022, Vol. 13, 837097. doi: 10.3389/fimmu.2022.837097.

52. Okuma Y., Wakui H., Utsumi H., Sagawa Y., Hosomi Y., Kuwano K., Homma S. Soluble programmed cell death ligand 1 as a novel biomarker for Nivolumab therapy for non-small-cell lung cancer. Clin. Lung Cancer, 2018, Vol. 19, no. 5, pp. 410-477.e1.

53. Okuyama M., Mezawa H., Kawai T., Urashima M. Elevated soluble PD-L1 in pregnant women’s serum suppresses the immune reaction. Front. Immunol., 2019, Vol. 10, 86. doi: 10.3389/fimmu.2019.00086.

54. Ostrand-Rosenberg S., Horn L.A., Alvarez J.A. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunol. Immunother., 2015, Vol. 64, no. 10, pp. 1287-1293.

55. Pawłowska A., Kwiatkowska A., Suszczyk D., Chudzik A., Tarkowski R., Barczyński B., Kotarski J., Wertel I. Clinical and prognostic value of antigen-presenting cells with PD-L1/PD-L2 expression in ovarian cancer patients. Int. J. Mol. Sci., 2021, Vol. 22, no. 21, 11563. doi: 10.3390/ijms222111563.

56. Pegtel D., Gould S.J. Exosomes. Annu. Rev. Biochem., 2019, Vol. 88, pp. 487-514.

57. Qiu H., Liu S., Xie C., Long J., Feng Z. Regulating immunity and inhibiting tumor growth by the recombinant peptide sPD-1-CH50. Anticancer Res., 2009, Vol. 29, no. 12, pp. 5089-5094.

58. Qu S., Jiao Z., Lu G., Yao B., Wang T., Rong W., Xu J., Fan T., Sun X., Yang R., Wang J., Yao Y., Xu G., Yan X., Wang T., Liang H., Zen K. PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol., 2021, Vol. 22, no. 1, 104. doi: 10.1186/s13059-021-02331-0.

59. Rapoport B., Steel H., Smit T., Heyman L., Theron A., Hlatswayo N., Kwofie L., Jooste L., Benn C., Nayler S., Anderson R. Dysregulation of soluble immune checkpoint proteins in newly diagnosed early breast cancer patients. Ann. Oncol., 2020, Vol. 31, Suppl. 5, 1228. doi: 10.1016/j.annonc.2020.08.2196.

60. Riva A., Adams H., Patel V., Azarian S., Wright G., Tarff S., Katzarov K., Simonova M., Hadzhiolova T., Pavlova S., Williams R., Evans A., Chokshi S. The TIM3-Gal9 immune checkpoint axis is inter-linked with severity of alcoholic liver disease. J. Hepatol., 2018, Vol. 68, pp. S810-S811.

61. Riva A., Chokshi S. Immune checkpoint receptors: homeostatic regulators of immunity. Hepatol. Int., 2018, Vol. 12, no 3, pp. 223-236.

62. Riva A., Palma E., Devshi D., Corrigall D., Adams H., Heaton N., Menon K., Preziosi M., Zamalloa A., Mique R., Ryan J., Wright G., Fairclough S., Evans A., Shawcross D., Schierwagen R., Klein S., Uschner F., Praktiknjo M., Katzarov K., Hadzhiolova T., Pavlova S., Simonova M., Trebicka J., Williams R., Chokshi S. Soluble TIM3 and its ligands galectin-9 and CEACAM1 are in disequilibrium during alcohol-related liver disease and promote impairment of anti-bacterial immunity. Front. Physiol., 2021, Vol. 12, 632502. doi: 10.3389/fphys.2021.632502.

63. Riva A. Editorial: Soluble immune checkpoints: Novel physiological immunomodulators. Front. Immunol., 2023, Vol. 14, 1178541. doi: 10.3389/fimmu.2023.1178541.

64. Roemer M., Redd R.A., Cader F.Z., Pak C.J., Abdelrahman S., Ouyang J., Sasse S., Younes A., Fanale M., Santoro A., Zinzani P.L., Timmerman J., Collins G.P., Ramchandren R., Cohen J.B., De Boer J.P., Kuruvilla J., Savage K., Trneny M., Ansell S., Kato K., Farsaci B., Sumbul A., Armand P., Neuberg D., Pinkus G.S., Ligon A.H., Rodig S.J., Shipp M.A. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol., 2018, Vol. 36, no. 10, pp. 942-950.

65. Romero Y., Wise R., Zolkiewska A. Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol. Immunother., 2020, Vol. 69, no. 1, pp. 43-55.

66. Rossille D., Gressier M., Damotte D., Maucort-Boulch D., Pangault C., Semana G., Le Gouill S., Haioun C., Tarte K., Lamy T., Milpied N., Fest T. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial. Leukemia, 2014, Vol. 28, no. 12, pp. 2367-2375.

67. Ruan Y., Hu W., Li W., Lu H., Gu H., Zhang Y., Zhu S., Chen Q. Analysis of plasma EBV-DNA and soluble checkpoint proteins in nasopharyngeal carcinoma patients after definitive intensity-modulated radiotherapy. Biomed Res. Int., 2019, Vol. 2019, 3939720. doi: 10.1155/2019/3939720

68. Shin K., Kim J., Park S., Lee M., Park J., Choi M., Kang D., Song K., Seo H., Lee S., Kim B., Kim O., Park J., Kang N., Kim I. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci. Rep. 2023, Vol. 13, no. 1, 6952. doi: 10.1038/s41598-023-33128-9.

69. Song M., Park S., Nam H., Choi D., Sung Y. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J. Immunother., 2011, Vol. 34, no. 3, pp. 297-306.

70. Sorensen S., Demuth C., Weber B., Sorensen B.S., Meldgaard P. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer, 2016, Vol. 100, pp. 77-84.

71. Spiotto M., Fu Y.X., Weichselbaum R.R. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci. Immunol., 2016, Vol. 1, no. 3, EAAG1266. doi: 10.1126/sciimmunol.aag1266.

72. Srivastava R., Trivedi S., Concha-Benavente F., Hyun-Bae J., Wang L., Seethala R.R., Branstetter 4th B.F., Ferrone S., Ferris R.L. STAT1-induced HLA class I upregulation enhances immunogenicity and clinical response to anti-EGFR mAb cetuximab therapy in HNC patients. Cancer Immunol. Res., 2015, Vol. 3, no. 8, pp. 936-945.

73. Tarhoni I., Fhied C., Gerard D., Borgia J. Multiplexed evaluation of soluble immune-checkpoint molecules in sera from metastatic NSCLC patients receiving immunotherapy. Available at: https://www.oxfordglobal.co.uk/wpcontent/uploads/2023/03/Merck-Millipore-Multiplexed-Evaluation-of-Soluble-Immune-Checkpoint-Molecules.

74. Vajavaara H., Mortensen J., Leivonen S., Hansen I., Ludvigsen M., Holte H., Jørgensen J., Bjerre M., d’Amore F., Leppä S. Soluble PD-1 but not PD-L1 levels predict poor outcome in patients with high-risk diffuse large B-cell lymphoma. Cancers (Basel), 2021, Vol. 13, no. 3, 398. doi: 10.3390/cancers13030398.

75. Vikerfors A., Davidsson S., Frey J., Jerlström T., Carlsson J. Soluble PD-L1 in serum and urine in urinary bladder cancer patients. Cancers (Basel), 2021, Vol. 13, no. 22, 5841. doi: 10.3390/cancers13225841.

76. Vivarelli S., Falzone L., Torino F., Scandurra G., Russo G., Bordonaro R., Russo G., Bordonaro R., Pappalardo F., Spandidos D., Raciti G., Libra M. Immune-checkpoint inhibitors from cancer to COVID−19: A promising avenue for the treatment of patients with COVID−19 (Review). Int. J. Oncol., 2021, Vol. 58, no. 2, pp. 145-157.

77. Wang J., Zhang H., Sun X., Wang X., Ren T., Huang Y., Zhang R., Zheng B., Guo W. Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients. J. Nanobiotechnol., 2020, Vol. 18, no. 1, 151. doi: 10.1186/s12951-020-00710-6.

78. Wang L., Wang H., Chen H., Wang W., Chen X., Geng Q., Xia Z., Lu Y. Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget, 2015, Vol. 6, no. 38, pp. 41228-41236.

79. Wang Q., He1 Y., Li W., Xu X., Hu Q., Bian Z., Xu A., Tu H., Wu M., Wu X. Soluble immune checkpointrelated proteins in blood are associated with invasion and progression in non-small cell lung cancer. Front. Immunol., 2022, Vol. 13, 887916. doi: 10.3389/fimmu.2022.887916.

80. Ward F., Dahal L., Khanolkar R., Shankar S., Barker R. Targeting the alternatively spliced soluble isoform of CTLA-4: prospects for immunotherapy? Immunotherapy, 2014, Vol. 6, no. 10, pp. 1073-1084. doi: 10.2217/imt.14.73.

81. Yasinska I., Meyer H., Schlichtner S., Hussain R., Siligardi G., Casely-Hayford M., Fiedler W., Wellbrock J., Desmet C., Calzolai L., Varani L., Berger S., Raap U., Gibbs B., Fasler-Kan E., Sumbayev E. Ligand-receptor interactions of Galectin-9 and VISTA suppress human T lymphocyte cytotoxic activity. Front. Immunol., 2020, Vol. 11, 580557. doi: 10.3389/fimmu.2020.580557.

82. Yin Z., Yu M., Ma T., Zhang C., Huang S., Karimzadeh M.R., Momtazi-Borojeni A.A., Chen S. Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: A key role of exosomal PD-L1. J. Immunother. Cancer, 2021, Vol. 9, no. 1, e001698. doi: 10.1136/jitc-2020-001698

83. Ying H., Zhang X., Duan Y., Lao M., Xu J., Yang H., Liang T., Bai X. Non-cytomembrane PD-L1: an atypical target for cancer. Pharmacol. Res., 2021, Vol. 170, 105741. doi: 10.1016/j.phrs.2021.105741.

84. Zeng Z., Shi F., Zhou L., Zhang M., Chen Y., Chang X., Lu Y., Bai W., Qu J., Wang C., Wang H., Lou M., Wang F., Lv J., Yang Y. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS One, 2011, Vol. 6, no. 9, e23621. doi: 10.1371/journal.pone.0023621.

85. Zhang P., Ouyang S., Wang J., Huang Z., Wang J., Liao L. Levels of programmed death-1 and programmed death ligand-1 in the peripheral blood of patients with oral squamous cell carcinoma and its clinical implications. West China J. Stomatology, 2015, Vol. 33, no. 5, pp. 529-533.

86. Zheng Z., Bu Z., Liu X., Zhang L., Li Z., Wu A., Wu X., Cheng X., Xing X., Du H., Wang X., Hu Y., Ji J. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer Res., 2014, Vol. 26, no. 1, pp. 104-111.

87. Zhou J., Mahoney K., Giobbie-Hurder A., Zhao F., Lee S., Liao X., Rodig S., Li J., Wu X., Butterfield L., Piesche M., Manos M., Eastman L., Dranoff G., Freeman G., Hodi F. Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol. Res., 2017, Vol. 5, no. 6, pp. 480-492.


Дополнительные файлы

Рецензия

Для цитирования:


Глазанова Т.В., Павлова И.Е., Кузьмич Е.В., Бубнова Л.Н. Растворимые молекулы иммунных контрольных точек: механизмы образования, функции, роль при злокачественных новообразованиях. Медицинская иммунология. 2025;27(1):21-34. https://doi.org/10.15789/1563-0625-SIC-2965

For citation:


Glazanova T.V., Pavlova I.E., Kuzmich E.V., Bubnova L.N. Soluble immune checkpoint molecules: mechanism of formation, function, role in malignant neoplasms. Medical Immunology (Russia). 2025;27(1):21-34. (In Russ.) https://doi.org/10.15789/1563-0625-SIC-2965

Просмотров: 446


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)