Перспективы создания новых лечебно-профилактических средств на основе симбиотических штаммов бактерий для коррекции нарушений иммунной регуляции, опосредованной кишечной микробиотой при COVID-19
https://doi.org/10.15789/1563-0625-PON-2962
Аннотация
Современные исследования роли кишечной микробиоты у животных и человека показывают, что микроорганизмы являются важным фактором, определяющим здоровье хозяина, и участвуют в патогенезе различных инфекционных и неинфекционных заболеваний. В настоящее время активно исследуются механизмы формирования функциональной оси «кишечник – легкие» при новой коронавирусной инфекции COVID-19, где желудочно-кишечный тракт может являться входными воротами инфекции, указывая на вовлечение кишечной микробиоты в инфекционный процесс. С одной стороны, изменение микробиоты пациентов (дисбиоз), инфицированных вирусом SARS-CoV-2, является одним из факторов развития вторичной бактериальной инфекции, сепсиса, системного воспаления и полиорганной недостаточности. С другой стороны, нарушение микробиоты кишечника способствует развитию тяжелого течения и летального исхода у пациентов из-за двунаправленной связи кишечной микробиоты через систему иммунитета посредством цитокинов. Показана связь степени тяжести COVID-19 у пациентов с уровнем цитокинов и выявлением в кишечном биотопе определенных видов «провоспалительных» или «противовоспалительных» бактерий. Иммунологические нарушения у пациентов с COVID-19 также опосредованы изменением профиля метаболома на фоне дисбиотических нарушений микробиоты. Связь между составом микробиоты кишечника, уровнями цитокинов и воспалительными маркерами позволяет предположить, что микробиом кишечника влияет на развитие и течение коронавирусной инфекции, а «симбиотический потенциал» нормобиоты может быть использован для разработки мер профилактики и реабилитации пациентов. Этому может способствовать развитие исследований в направлении проблемы симбиоза человека и микробиоты. Ряд ключевых механизмов изучения интеграции бифидобактерий и лактобацилл с хозяином, опосредованные системой иммунитета, гормонов и нейромедиаторов, открывают новые перспективы для медицины, включая получение новых пробиотических штаммов различной целевой установки для лечебно-профилактической коррекции нарушенных функций организма. Изучение микросимбиоценоза, как одного из векторов ассоциативного симбиоза, позволило разработать метод межмикробного распознавания «свой-чужой», где в качестве тестовой распознающей культуры используются бифидобактерии, т. к. для «своих» штаммов характерен синергизм (поддержка), тогда как при встрече с «чужой клеткой» – антагонизм. Именно этот фундаментальный механизм можно использовать при отборе «своих» для хозяина штаммов, пригодных для создания пробиотической композиции.
Ключевые слова
Об авторах
О. В. БухаринРоссия
Бухарин О.В. – д.м.н., академик РАН, главный научный сотрудник лаборатории биомониторинга и молекулярной генетики Института клеточного и внутриклеточного симбиоза Уральского отделения Российской академии наук – обособленное структурное подразделение
г. Оренбург
Н. Б. Перунова
Россия
Перунова Н.Б. – д.м.н., профессор РАН, заместитель директора по научной работе, ведущий научный сотрудник лаборатории биомониторинга и молекулярной генетики Института клеточного и внутриклеточного симбиоза Уральского отделения Российской академии наук – обособленное структурное подразделение; главный научный сотрудник лаборатории микробиома, регенеративной медицины и клеточных технологий Университетского научно-исследовательского института медицинских биотехнологий и биомедицины
г. Оренбург;
625023, г. Тюмень, ул. Одесская, 54.
Т. Х. Тимохина
Россия
Тимохина Т.Х. – д.б.н., доцент, заведующая кафедрой микробиологии Института фармации
625023, г. Тюмень, ул. Одесская, 54.
Е. Г. Костоломова
Россия
Костоломова Е.Г. – к.б.н., доцент кафедры микробиологии Института фармации; научный сотрудник лаборатории геномики, протеомики и метаболомики Университетского научноисследовательского института медицинских биотехнологий и биомедицины
625023, г. Тюмень, ул. Одесская, 54.
Я. И. Паромова
Россия
Паромова Я.И. – к.б.н., доцент кафедры микробиологии
625023, г. Тюмень, ул. Одесская, 54.
Е. В. Иванова
Россия
Иванова Е.В. – д.м.н., доцент, ведущий научный сотрудник с исполнением обязанностей заведующего лабораторией инфекционной симбиологии, Институт клеточного и внутриклеточного симбиоза Уральского отделения Российской академии наук – обособленное структурное подразделение
г. Оренбург
Е. Д. Полянских
Россия
Полянских Е.Д. – студент Института материнства и детства
625023, г. Тюмень, ул. Одесская, 54.
А. А. Марков
Россия
Марков А.А. – к.м.н., ведущий научный сотрудник лаборатории геномики, протеомики, метаболомики, директор Университетского научно-исследовательского института медицинских биотехнологий и биомедицины; доцент кафедры медицинской профилактики и реабилитации Института общественного здоровья и цифровой медицины
625023, г. Тюмень, ул. Одесская, 54.
Список литературы
1. Abdulrab S., Al-Maweri S., Halboub E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med. Hypotheses, 2020, Vol. 143, 109897. doi: 10.1016/j.mehy.2020.109897.
2. Ahlawat S., Asha, Sharma K.K. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res., 2020, Vol. 286, 198103. doi: 10.1016/j.virusres.2020.198103.
3. Aktas B., Aslim B. Gut-lung axis and dysbiosis in COVID-19. Turk. J. Biol., 2020, Vol. 44, no. 3, pp. 265-272.
4. Aleman F.D.D., Valenzano D.R. Microbiome evolution during host aging. PLoS Pathog., 2019, Vol. 1, no. 7, e1007727. doi: 10.1371/journal.ppat.1007727.
5. Aptekar I.A., Kostolomova E.G., Sukhovey Yu.G., Aptekar V.I., Abramova E.V. Change in the functional activity of fibroblasts in patients with coronavirus infection (history of SARS-CoV-2). Russian Osteopathic Journal, 2024, Vol. 1, pp. 67-77. (In Russ.)
6. Belkaid Y., Harrison O.J. Homeostatic immunity and the microbiota. Immunity, 2017, Vol. 46, no. 4, pp. 562-576.
7. Bingula R., Filaire M., Radosevic-Robin N., Bey M., Berthon J.Y., Bernalier-Donadille A., Vasson M.P., Filaire E. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. J. Oncol., 2017, Vol. 2017, 5035371. doi: 10.1155/2017/5035371.
8. Boursi B., Mamtani R., Haynes K., Yang YX. Recurrent antibiotic exposure may promote cancer formation – Another step in understanding the role of the human microbiota? Eur. J. Cancer, 2015, Vol. 51, no. 17, pp. 2655-2664.
9. Bukharin O.V., Semenov A.V., Cherkasov S.V. Antagonistic activity of probiotic bacteria. Clinical Microbiology and Antimicrobial Chemotherapy, 2010, Vol. 12, no. 4, pp. 347-352. (In Russ.)
10. Bukharin O.V. Persistence of pathogenic bacteria. Moscow: Meditsina, 199. 365 p.
11. Bukharin O.V., Lobakova E.S., Nemtseva N.V., Cherkasov S.V. Associative symbiosis. Ekaterinburg: UD RAS, 2007. 264 p.
12. Bukharin O.V., Perunova N.B., Ivanova E.V. Bifidoflora in human associative symbiosis. Ekaterinburg: UrD of the RAS, 2014. 212 p.
13. Bukharin O.V., Stadnikov A.A., Perunova N.B. Oxytocin and microbiota role in regulation of pro- and eukaryote interactions in infection. Ekaterinburg: UrD of the RAS, 2018. 247 p.
14. Chervinets Yu.V., Cervinets V.M., Mironov A.Yu. Symbiotic relationships of lactobacilli and microorganisms of the gastrointestinal tract. Tver: Tver State Medical University, 2016. 214 p.
15. Cheung K.S., Hung I.F.N., Chan P.P.Y., Lung K.C., Tso E., Liu R., Ng Y.Y., Chu M.Y., Chung T.W.H., Tam A.R., Yip C.C.Y., Leung K.H., Fung A.Y., Zhang R.R., Lin Y., Cheng H.M., Zhang A.J.X., To K.K.W., Chan K.H., Yuen K.Y., Leung W.K. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology, 2020, Vol. 159, no. 1, pp. 81-95.
16. Chung H., Pamp S.J., Hill J.A., Surana N.K., Edelman S.M., Troy E.B. Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 2012, Vol. 149, no. 7, pp. 1578-1593.
17. Dhar D., Mohanty A. Gut microbiota and Covid-19 – possible link and implications. Virus Res., 2020, Vol. 285, 198018. doi: 10.1016/j.virusres.2020.198018.
18. Dickson R.P., Singer B.H., Newstead M.W., Falkowski N.R., Erb-Downward J.R., Standiford T.J., Huffnagle G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol., 2016, Vol. 1, no. 1, 16113. doi: 10.1038/nmicrobiol.2016.113.
19. Fagundes C.T., Amaral F.A., Vieira A.T., Soares A.C., Pinho V., Nicoli J.R., Vieira L.Q., Teixeira M.M., Souza D.G. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J. Immunol., 2012, Vol. 188, no. 3, pp. 1411-1420.
20. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, Vol. 19, no. 1, pp. 55-71.
21. Feleszko W., Jaworska J., Rha R.D., Steinhausen S., Avagyan A., Jaudszus A., Ahrens B., Groneberg D.A., Wahn U., Hamelmann E. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin. Exp. Allergy, 2007, Vol. 37, no. 4, pp. 498-505.
22. Gaibani P., D’Amico F., Bartoletti M., Lombardo D., Rampelli S., Fornaro G., Coladonato S., Siniscalchi A., Re M.C., Viale P., Brigidi P., Turroni S., Giannella M. The gut microbiota of critically ill patients with COVID-19. Front. Cell. Infect. Microbiol., 2021 Vol. 11, 670424. doi: 10.3389/fcimb.2021.670424.
23. Geva-Zatorsky N., Sefik E., Kua L., Pasman L., Tan TG., Ortiz-Lopez A., Yanortsang T.B., Yang L., Jupp R., Mathis D., Benoist C., Kasper D.L. Mining the human gut microbiota for immunomodulatory organisms. Cell, 2017, Vol. 168, no. 5, pp. 928-943.e11.
24. Gill H.S., Rutherfurd K.J., Cross M.L., Gopal P.K. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am. J. Clin. Nutr., 2001, Vol. 74, no. 6, pp. 833-839.
25. Gill H.S., Rutherfurd K.J., Cross M.L. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J. Clin. Immunol., 2001, Vol. 21, no. 4, pp. 264-271.
26. Giron L.B., Dweep H., Yin X., Wang H., Damra M., Goldman A.R., Gorman N., Palmer C.S., Tang H.Y., Shaikh M.W., Forsyth C.B., Balk R.A., Zilberstein N.F., Liu Q., Kossenkov A., Keshavarzian A., Landay A., Abdel-Mohsen M. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front. Immunol., 2021, Vol. 12, 686240. doi: 10.3389/fimmu.2021.686240.
27. Glushanova N.A., Shenderov B.A. Relationships between the probiotic and host indigenous lactobacilli under the conditions of mixed cultivation in vitro. Journal of Microbiology, Epidemiology and Immunobiology, 2005, no. 2, pp. 56-61. (In Russ.)
28. Groves H.T., Cuthbertson L., James P., Moffatt M.F., Cox M.J., Tregoning J.S. Respiratory disease following viral lung infection alters the murine gut microbiota. Front. Immunol., 2018, Vol. 9, 182. doi: 10.3389/fimmu.2018.00182.
29. Gupta A., Madhavan M.V., Sehgal K., Nair N, Mahajan S., Sehrawat T.S., Bikdeli B., Ahluwalia N., Ausiello J.C., Wan E.Y., Freedberg D.E., Kirtane A.J., Parikh S.A., Maurer M.S., Nordvig A.S., Accili D., Bathon J.M., Mohan S., Bauer K.A., Leon M.B., Krumholz H.M., Uriel N., Mehra M.R., Elkind M.S.V., Stone G.W., Schwartz A., Ho D.D., Bilezikian J.P., Landry D.W. Extrapulmonary manifestations of COVID-19. Nat. Med., 2020, Vol. 26, no. 7, pp. 1017-1032.
30. Haase S., Haghikia A., Wilck N., Müller D.N., Linker R.A. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology, 2018, Vol. 154, no. 2, pp. 230-238.
31. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., Sigl V., Hanada T., Hanada R., Lipinski S., Wild B., Camargo S.M., Singer D., Richter A., Kuba K., Fukamizu A., Schreiber S., Clevers H., Verrey F., Rosenstiel P., Penninger J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, Vol. 487, no. 7408, pp. 477-481.
32. Hufnagl K., Pali-Schöll I., Roth-Walter F., Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol., 2020, Vol. 42, no. 1, pp. 75-93.
33. Iacucci M., Cannatelli R., Labarile N., Mao R., Panaccione R., Danese S., Kochhar G.S., Ghosh S., Shen B. Endoscopy in inflammatory bowel diseases during the COVID-19 pandemic and post-pandemic period. Lancet Gastroenterol. Hepatol., 2020, Vol. 5, no. 6, pp. 598-606.
34. Il’in V.K., Suvorov A.N., Kiriukhina N.V., Usanova N.A., Starkova L.V., Boiarintsev V.V., Karaseva A.B. Autochthonous probiotics in prevention of infectious and inflammatory diseases of a human in the altered habitats. Annals of the Russian Academy of Medical Sciences, 2013, Vol. 2, pp. 56-62. (In Russ.)
35. Jabczyk M., Nowak J., Hudzik B., Zubelewicz-Szkodzińska B. Microbiota and Its Impact on the Immune System in COVID-19-A Narrative Review. J. Clin. Med., 2021 Vol. 10, no. 19, 4537. doi: 10.3390/jcm10194537.
36. Jia W., Xie G., Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol., 2018, Vol. 15, no. 2, pp. 111-128.
37. Kasabri V., Shawakri E., Akour A., Naffa R., Khawaja N., Al-Sarraf I., Bzour J. Cross-sectional correlates of increased IL-18 but reduced fetuin-A and oxytocin with adiposity and blood indices in metabolic syndrome patients with and without prediabetes. Ther. Adv. Endocrinol. Metab., 2018, Vol. 9, no. 12, pp. 329-338.
38. Katz-Agranov N., Zandman-Goddard G. Autoimmunity and COVID-19 – The microbiotal connection. Autoimmun. Rev., 2021, Vol. 20, no. 8, 102865. doi: 10.1016/j.autrev.2021.102865.
39. Khan M., Mathew B.J., Gupta P., Garg G., Khadanga S., Vyas A.K., Singh A.K. Gut dysbiosis and IL-21 response in patients with severe COVID-19. Microorganisms, 2021, Vol. 9, no. 6, 1292. doi: 10.3390/microorganisms9061292.
40. Koptyug A., Sukhovei Y., Kostolomova E., Unger I., Kozlov V. Novel strategy in searching for natural compounds with anti-aging and rejuvenating potential. Int. J. Mol. Sci., 2023, Vol. 24, no. 9, 8020. doi: 10.3390/ijms24098020.
41. Kostolomova E.G., Timokhina T.K., Perunova N.B., Polyanskikh E.D., Sakharov R.A., Komarova A.V. In vitro evaluation of immunomodulatory activity of Bifidobacterium bifidum 791 in the cell model of innate and adaptive immunity. Russian Journal of Immunology, 2022, Vol. 25, no. 2, pp. 213-218. (In Russ.) doi: 10.46235/1028-7221-1133-IVE.
42. Kostolomova E.G., Lozovaya P.B., Polyanskih E.D., Timokhina T.Kh., Paromova Ya.I. Studying the antiinflammatory activity of Bifidobacterium bifidum supernatants and chicken embryo cells on a model of opisthochic invasion. Russian Journal of Immunology, 2024, Vol. 27, no. 2, pp. 181-186. (In Russ.) doi: 10.46235/1028-7221-16675-STA.
43. Li J., Richards E.M., Handberg E.M., Pepine C.J., Raizada M.K. Butyrate Regulates COVID-19-relevant genes in gut epithelial organoids from normotensive rats. Hypertension, 2021, Vol. 77, no. 2, pp. 13-16.
44. Lin L., Jiang X., Zhang Z., Huang S., Zhang Z., Fang Z., Gu Z., Gao L., Shi H., Mai L., Liu Y., Lin X., Lai R., Yan Z., Li X., Shan H. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut, 2020, Vol. 69, no. 6, pp. 997-1001.
45. Litvak Y., Byndloss M.X., Bäumler A.J. Colonocyte metabolism shapes the gut microbiota. Science, 2018, Vol. 362, no. 6418, eaat9076. doi: 10.1126/science.aat9076.
46. Mao X., Gu C., Ren M., Chen D., Yu B., He J., Yu J., Zheng P., Luo J., Luo Y., Wang J., Tian G., Yang Q. l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model. Front. Immunol., 2018, Vol. 9, 1654. doi: 10.3389/fimmu.2018.01654.
47. Markov A.A., Kostolomova E.G., Timokhina T.Kh., Solovyev G.S., Paromova Ya.I., Polyanskih E.D., Voronin K.A. Effect of Bifidobacterium bifidum supernatant on the morphological and functional characteristics of human fibroblasts in real time during an in vitro experiment. Medical Immunology (Russia), 2023, Vol. 25, no. 3, pp. 581-586. doi: 10.15789/1563-0625-EOB-2720.
48. Mizutani T., Ishizaka A., Koga M., Ikeuchi K., Saito M., Adachi E., Yamayoshi S., Iwatsuki-Horimoto K., Yasuhara A., Kiyono H., Matano T., Suzuki Y., Tsutsumi T., Kawaoka Y., Yotsuyanagi H. Correlation analysis between gut microbiota alterations and the cytokine response in patients with coronavirus disease during hospitalization. Microbiol. Spectr., 2022, Vol. 10, no. 2, e0168921. doi: 10.1128/spectrum.01689-21.
49. Moens E., Veldhoen M. Epithelial barrier biology: good fences make good neighbours. Immunology, 2012, Vol. 135, no. 1, pp. 1-8.
50. Nagata N., Takeuchi T., Masuoka H., Aoki R., Ishikane M., Iwamoto N., Sugiyama M., Suda W., Nakanishi Y., Terada-Hirashima J., Kimura M., Nishijima T., Inooka H., Miyoshi-Akiyama T., Kojima Y., Shimokawa C, Hisaeda H., Zhang F., Yeoh Y.K., Ng S.C., Uemura N., Itoi T., Mizokami M., Kawai T., Sugiyama H., Ohmagari N., Ohno H. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications. Gastroenterology, 2023, Vol. 164, no. 2, pp. 272-288.
51. Negi S., Das D.K., Pahari S., Nadeem S., Agrewala J.N. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol., 2019, Vol. 10, 2441. doi: 10.3389/fimmu.2019.02441.
52. Negi S., Pahari S., Bashir H, Agrewala J.N. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front. Immunol., 2019, Vol. 10, 1142. doi: 10.3389/fimmu.2019.01142.
53. Nejadghaderi S.A., Nazemalhosseini-Mojarad E., Asadzadeh Aghdaei H. Fecal microbiota transplantation for COVID-19; a potential emerging treatment strategy. Med. Hypotheses, 2021, Vol. 147, 110476. doi: 10.1016/j.mehy.2020.110476.
54. Ostaff M.J., Stange E.F., Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol. Med., 2013, Vol. 5, no. 10, pp. 1465-1483.
55. Poochi S.P., Easwaran M., Balasubramanian B., Anbuselvam M., Meyyazhagan A., Park S., Bhotla H.K., Anbuselvam J., Arumugam V.A., Keshavarao S., Kanniyappan G.V., Pappusamy M., Kaul T. Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS-CoV-2 main protease and ACE2 protein. Food Front., 2020, Vol. 1, no. 2, pp. 168-179.
56. Poutahidis T., Kearney S.M., Levkovich T., Qi P., Varian B.J., Lakritz J.R., Ibrahim Y.M., Chatzigiagkos A., Alm E.J., Erdman S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 2013, Vol. 8, no. 10, e78898. doi: 10.1371/journal.pone.0078898.
57. Prasad R., Patton M.J., Floyd J.L., Fortmann S., DuPont M., Harbour A., Wright J., Lamendella R., Stevens B.R., Oudit G.Y., Grant M.B. Plasma microbiome in COVID-19 subjects: an indicator of gut barrier defects and dysbiosis. Int. J. Mol. Sci., 2022, Vol. 23, no. 16, 9141. doi: 10.3390/ijms23169141.
58. Proctor L.M. The Human Microbiome Project in 2011 and beyond. Cell Host Microbe, 2011, Vol. 10, no. 4, pp. 287-291.
59. Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun., 2020, Vol. 526, no. 1, pp. 135-140.
60. Qian Q., Fan L., Liu W., Li J., Yue J., Wang M., Ke X., Yin Y., Chen Q., Jiang C. Direct evidence of active SARS-CoV-2 replication in the intestine. Clin. Infect. Dis. 2021, Vol. 73, no. 3, pp. 361-366.
61. Reinold J., Farahpour F., Fehring C., Dolff S., Konik M., Korth J., van Baal L., Hoffmann D., Buer J., Witzke O., Westendorf A.M., Kehrmann J. A. Pro-Inflammatory Gut Microbiome Characterizes SARS-CoV-2 Infected Patients and a Reduction in the Connectivity of an Anti-Inflammatory Bacterial Network Associates With Severe COVID-19. Front. Cell. Infect. Microbiol., 2021, Vol. 11, 747816. doi: 10.3389/fcimb.2021.747816.
62. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 2009, Vol. 9, no. 5, pp. 313-323.
63. Saad M.J., Santos A., Prada P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology, 2016, Vol. 31, no. 4, pp. 283-293.
64. Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., Chesselet M.F., Keshavarzian A., Shannon K.M., Krajmalnik-Brown R., Wittung-Stafshede P., Knight R., Mazmanian S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, Vol. 167, no. 6, pp. 1469-1480,e12.
65. Sarkesh A., Daei Sorkhabi A., Sheykhsaran E., Alinezhad F., Mohammadzadeh N., Hemmat N., Bannazadeh Baghi H. Extrapulmonary clinical manifestations in COVID-19 patients. Am. J. Trop. Med. Hyg., 2020, Vol. 103, no. 5, pp. 1783-1796.
66. Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, Vol. 581, no. 7807, pp. 221-224.
67. Song Y., Liu P., Shi X.L., Chu Y.L., Zhang J., Xia J., Gao X.Z., Qu T., Wang M.Y. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut, 2020, Vol. 69, no. 6, pp.1143-1144.
68. Sun Z., Song Z.G., Liu C., Tan S., Lin S., Zhu J., Dai F.H., Gao J., She J.L., Mei Z., Lou T., Zheng J.J., Liu Y, He J., Zheng Y., Ding C., Qian F., Zheng Y., Chen Y.M. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med., 2022, Vol. 20, no. 1, 24. doi: 10.1186/s12916-021-02212-0.
69. Tai N., Wong F.S., Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord., 2015, Vol. 16, no. 1, pp. 55-65.
70. Thibonnier M., Conarty D.M., Preston J.A., Plesnicher C.L., Dweik R.A., Erzurum S.C. Human vascular endothelial cells express oxytocin receptors. Endocrinology, 1999, Vol. 140, no. 3, 1301-1319.
71. Varian B.J., Poutahidis T., DiBenedictis B.T., Levkovich T., Ibrahim Y., Didyk E., Shikhman L., Cheung H.K., Hardas A., Ricciardi C.E., Kolandaivelu K., Veenema A.H., Alm E.J., Erdman S.E. Microbial lysate upregulates host oxytocin. Brain Behav. Immun., 2017, Vol. 61, pp. 36-49.
72. Vatanen T., Kostic A.D., d’Hennezel E, Siljander H., Franzosa E.A., Yassour M., Kolde R., Vlamakis H., Arthur T.D., Hämäläinen A.M., Peet A., Tillmann V., Uibo R., Mokurov S., Dorshakova N., Ilonen J., Virtanen S.M., Szabo S.J., Porter J.A., Lähdesmäki H., Huttenhower C., Gevers D., Cullen TW., Knip M. DIABIMMUNE Study Group; Xavier RJ. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell, 2016, Vol. 165, no. 4, pp. 842-853.
73. Viana S.D., Nunes S., Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Res. Rev., 2020, Vol. 62, 101123. doi: 10.1016/j.arr.2020.101123.
74. Wang B., Zhang L., Wang Y., Dai T., Qin Z., Zhou F., Zhang L. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct. Target Ther., 2022, Vol. 7, no. 1, 143. doi: 10.1038/s41392-022-00986-0.
75. West C.E., Dzidic M., Prescott S.L., Jenmalm M.C. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol. Int., 2017, Vol. 66, no. 4, pp. 529-538.
76. Wu C., Xu Q., Cao Z., Pan D., Zhu Y., Wang S., Liu D., Song Z., Jiang W., Ruan Y., Huang Y., Qin N., Lu H., Qin H. The volatile and heterogeneous gut microbiota shifts of COVID-19 patients over the course of a probioticsassisted therapy. Clin. Transl. Med., 2021, Vol. 11, no. 12, e643. doi: 10.1002/ctm2.643.
77. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., Kuang L., Fang X., Mishra N., Lu J., Shan H., Jiang G., Huang X. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol., 2020, Vol. 5, no. 5, pp. 434-435.
78. Xiao F., Tang M., Zheng X., Liu Y., Li X., Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 2020, Vol. 158, no. 6, pp. 1831-1833.e3.
79. Yao Y., Cai X., Fei W., Ye Y., Zhao M., Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit. Rev. Food Sci. Nutr., 2022, Vol. 62, no. 1, pp. 1-12.
80. Yeoh Y.K., Zuo T., Lui G.C., Zhang F., Liu Q., Li A.Y., Chung A.C., Cheung C.P., Tso E.Y., Fung K.S., Chan V., Ling L., Joynt G., Hui D.S., Chow K.M., Ng S.S.S., Li T.C., Ng R.W., Yip T.C., Wong G.L., Chan F.K., Wong C.K., Chan P.K., Ng S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, Vol. 70, no. 4, pp. 698-706.
81. Zhang F., Wan Y., Zuo T., Yeoh Y.K., Liu Q., Zhang L., Zhan H., Lu W., Xu W., Lui G.C.Y., Li A.Y.L., Cheung C.P., Wong C.K., Chan P.K.S., Chan F.K.L., Ng S.C. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology, 2022, Vol. 162, no. 2, pp. 548-561.e4.
82. Zhao Y., Liu Y., Li S., Peng Z., Liu X., Chen J., Zheng X. Role of lung and gut microbiota on lung cancer pathogenesis. J. Cancer Res. Clin. Oncol., 2021, Vol. 147, no. 8, pp. 2177-2186.
83. Zhdanova E.V., Rubtsova E.V., Kostolomova E.G. Clinical and immunological characteristics of post-COVID syndrome. Bulletin of Siberian Medicine, 2024, Vol. 23, no. 2, pp. 46-54. (In Russ.)
84. Zhdanova E.V., Rubtsova E.V., Kostolomova E.G. Human body resistance dynamics in the post-covid period. Russian Journal of Infection and Immunity, 2024, Vol. 14, no. 4, pp. 747-755. doi: 10.15789/2220-7619-HBR17659.
85. Zhou B., Pang X., Wu J., Liu T., Wang B., Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes, 2023, Vol. 15, no. 1, 2201157. doi: 10.1080/19490976.2023.2201157.
86. Zhou Y., Shi X., Fu W., Xiang F., He X., Yang B., Wang X., Ma W.L. Gut Microbiota Dysbiosis Correlates with Abnormal Immune Response in Moderate COVID-19 Patients with Fever. J. Inflamm. Res., 2021, Vol. 14, pp. 2619-2631.
87. Zurochka A.V., Dobrynina M.А., Safronova E.A., Zurochka V.A., Zuikova A.A., Sarapultsev G.P., Zabkov O.I., Mosunov A.A., Verkhovskaya M.D., Ducardt V.V., Fomina L.O., Kostolomova E.G., Ostankova Y.V., Kudryavtsev I.V., Totolian A.A. Alterations in T cell immunity over 6–12 months post-COVID-19 infection in convalescent individuals: a screening study. Russian Journal of Infection and Immunity, 2024, Vol. 14, no. 4, pp. 756-768. (In Russ.) doi: 10.15789/2220-7619-AIT-17646.
Дополнительные файлы
Рецензия
Для цитирования:
Бухарин О.В., Перунова Н.Б., Тимохина Т.Х., Костоломова Е.Г., Паромова Я.И., Иванова Е.В., Полянских Е.Д., Марков А.А. Перспективы создания новых лечебно-профилактических средств на основе симбиотических штаммов бактерий для коррекции нарушений иммунной регуляции, опосредованной кишечной микробиотой при COVID-19. Медицинская иммунология. 2025;27(5):961-972. https://doi.org/10.15789/1563-0625-PON-2962
For citation:
Bukharin O.V., Perunova N.B., Timokhina T.Kh., Kostolomova E.G., Paromova Ya.I., Ivanova E.V., Polyanskih E.D., Markov A.A. Prospectives of novel therapeutic and prophylactic medications based on symbiotic bacterial strains for correction of immune disorders mediated by intestinal microbiota in COVID-19. Medical Immunology (Russia). 2025;27(5):961-972. https://doi.org/10.15789/1563-0625-PON-2962