Preview

Medical Immunology (Russia)

Advanced search

Autoimmune uveitis: risk factors and issues of immunopathogenesis

https://doi.org/10.15789/1563-0625-AUR-2956

Abstract

We present recent advances in studying the mechanisms of susceptibility to immune-mediated uveitis (IM) and its pathogenesis. Animal models of human uveitis are described in details. Those include the best characterized models of experimental anterior uveitis (endotoxin-induced uveitis and experimental autoimmune anterior uveitis). As a result of these studies, some relevant transcription factors were detected, such as STAT3, Interferon regulatory factor 4, 8; regulatory proteins, e.g., suppressors of cytokine signaling 1, 3 (SOCS1, SOCS3) and cytokine signaling pathways that regulate the development of IS and may serve as potential therapeutic targets for treatment. Environmental risk factors contributing to the development of IS are also characterized. The presented data concern the influence of physical activity, smoking, state of intestinal microbiome, and diet on the incidence of IS, as well as known and suspected contribution of the risk factors to the initiation and pathogenesis of the disease. In particular, we present results of studies which suggest two main options of intestinal microbiome involvement in the IS development: intestinal microbiome antigens act as triggers for activation of T cells specific for retinal antigens, and the microbiome modulates the balance of effector subpopulations of T lymphocytes (Th1 and Th17) and immunoregulatory subpopulations cells (Treg). It is reported that high levels of expression of ocular proteins (interphotoreceptor retinoid binding protein – IRBP or S-antigen) in the thymus correlated with resistance to the development of EAU, while low IRBP levels correlated with susceptibility to uveitis. These seminal studies in pathogenesis of IU allowed explanation for selective susceptibility to autoimmune uveitis and suggested regulation tools of resistance to uveitis, at least, in part, due to ability of maintaining central tolerance to retinal autoantigens. Uveitogenic memory T cells have been described to move from retina and peripheral lymphoid tissues to the bone marrow, remaining there in a quiescent state until re-stimulation, then transforming into various subpopulations of effector cells. Analysis of immunological studies in murine models of uveitis and peripheral blood of patients with uveitis had revealed a pathogenetic role of Th17 lymphocytes and a transcription activator STAT3 in development of autoimmune uveitis, with STAT3 signaling protein being a potential therapeutic target for non-infectious uveitis.

About the Authors

I. V. Shirinsky
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Ivan V. Shirinsky,  PhD, MD (Medicine), Leading ResearchAssociate, Head, Laboratory for Studying Multimorbidity of Rheumatic Diseases

175/1 Boris Bogatkov St Novosibirsk 630089 

Phone: +7 (913) 018-61-16


Competing Interests:

None declared



V. S. Shirinsky
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Shirinsky V.S., PhD, MD (Medicine), Professor, Leading Research Associate, Laboratory for Studying Multimorbidity of Rheumatic Diseases

Novosibirsk 


Competing Interests:

Конфликт интересов отсутствует



References

1. Agron E., Mares J., Clemons T.E., Swaroop A., Chew E.Y., Keenan T.D.L. Dietary nutrient intake and progression to late age-related macular degeneration in the age-related eye disease studies 1 and 2. Ophthalmology, 2021, Vol. 128, no. 3, pp. 425-442.

2. Amadi-Obi A., Yu C.R., Liu X., Mahdi R.M., Clarke G.L., Nussenblatt R.B. T(H)17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med., 2007, Vol. 13, no. 6, pp. 711-718.

3. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Toth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, Vol. 6, no. 263, 263ra158. doi: 10.1126/scitranslmed.3009759.

4. Broekhuyse R.M., Kuhlmann E.D., Winkens H.J. Experimental Autoimmune Anterior Uveitis (EAAU). III. Induction by immunization with purified uveal and skin melanins. Exp. Eye. Res., 1993, Vol. 56, no. 5 pp. 575-583.

5. Broekhuyse R.M., Kuhlmann E.D., Winkens H.J., Van Vugt A.H. Experimental Autoimmune Anterior Uveitis (EAAU), a new form of experimental uveitis. I. Induction by a detergent-insoluble, intrinsic protein fraction of the retinal pigment epithelium. Exp. Eye. Res., 1991, Vol. 52, no. 4, pp. 465-474.

6. Carrera-Bastos P., O’Keefe F., Lindeberg C. The western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol., 2011, Vol. 2011, no. 2, pp. 15-35.

7. Caspi R.R, Grubbs B.G., Chan C.C., Chader G.J., Wiggert B. Genetic control of susceptibility to experimental autoimmune uveoretinitis in the mouse model. Concomitant regulation by MHC and non-MHC Genes. J. Immunol., 1992, Vol. 148, no. 8. pp. 2384-2389.

8. Caspi R.R., Roberge F.G., Chan C.C., Wiggert B, Chader G.J., Rozenszajn L.A., Lando Z., Nussenblatt R.B. A new model of autoimmune disease. Experimental autoimmune uveoretinitis induced in mice with two different retinal antigens. J. Immunol., 1988, Vol. 140, no. 5, pp. 1490-1495.

9. Chaiwiang N., Poyomtip T. Microbial dysbiosis and microbiota-gut-retina axis: the lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity. Acta. Microbiol. Immunol. Hung., 2019, Vol. 66, no. 4, pp. 541-558.

10. Chang K., Yang S.M., Kim S.H., Han K.H., Park S.J., Shin J.I. Smoking and rheumatoid arthritis. Int. J. Mol. Sci., 2014, Vol. 15, no. 12, pp. 22279-22295.

11. Chen E.J, Bin Ismail M.A., Mi H., Ho S.L., Lim W.K., Teoh S.C. Ocular autoimmune systemic inflammatory infectious study (OASIS) – report 1: epidemiology and classification. Ocul. Immunol. Inflamm., 2018, Vol, 26, no. 5, pp. 732-746.

12. Chimenti M.S., Perricone C., Novelli L., Caso F., Costa L., Bogdanos D. Interaction between microbiome and host genetics in psoriatic arthritis. Autoimmun. Rev., 2018, Vol. 17. no. 3, pp. 276-283.

13. Chiu C.J., Chang M.L., Zhang F.F., Li T., Gensler G., Schleicher M. The relationship of major American dietary patterns to age-related macular degeneration. Am. J. Ophthalmol., 2014, Vol. 158, no. 1, pp. 118-127.e1.

14. Consolandi C., Turroni S., Emmi G., Severgnini M., Fiori J., Peano C. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun. Rev., 2015, Vol. 14, no. 4, pp. 269-276.

15. Cua D.J., Sherlock J., Chen Y., Murphy C.A., Joyce B., Seymour B. Interleukin-23 Rather Than interleukin-12 is the Critical Cytokine for Autoimmune Inflammation of the Brain. Nature, 2003, Vol. 421, no. 6924, pp. 744-748.

16. du Teil Espina M., Gabarrini G., Harmsen H.J.M., Westra J., van Winkelhoff A.J., van Dijl J.M. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in theetiology of rheumatoid arthritis. FEMS Microbiol. Rev., 2019, Vol. 43, no. 1, pp. 1-18.

17. Egwuagu C.E., Alhakeem S.A., Mbanefo E.C. Uveitis: molecular pathogenesis and emerging therapies. Front. Immunol., 2021, Vol. 12, 623725. doi: 10.3389/fimmu.2021.623725.

18. Egwuagu C.E., Charukamnoetkanok P., Gery I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol., 1997, Vol. 159, no. 7, pp. 3109-3112.

19. Egwuagu C.E., Sztein J., Mahdi R.M., Li W., Chan C.С., Smith J.A., Chepelinsky A.B. IFN-gamma increases the severity and accelerates the onset of experimental autoimmune uveitis in transgenic rats. J. Immunol., 1999, Vol. 162, no. 5, pp. 10-17.

20. Eriş E., Aydin E., Özçift S.G. The effect of the smoking on choroidal thickness, central macular vascular and optic disc perfusion. Photodiagnosis Photodyn. Ther., 2019, Vol. 28, pp. 142-145.

21. Forrester J.V., McMenamin P.G., Dando S.J. CNS infection and immune privilege. Nat. Rev. Neurosci., 2018, Vol. 19, no. 11, pp. 655-671.

22. Foster C.S., Kothari S., Anesi S.D., Vitale A.T., Chu D., Metzinger J.L. The ocular immunology and uveitis foundation preferred practice patterns of uveitis management. Surv. Ophthalmol., 2016, Vol. 61, no. 1, pp. 1-17.

23. Franzosa E. A., Sirota-Madi A., Avila-Pacheco J., Fornelos N., Haiser H.J., Reinker S. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol., 2018, Vol. 4, no. 2. pp. 293-305.

24. Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, Vol. 25. no. 12, pp. 1822-1832.

25. Gery I., Egwuagu C.E. Central tolerance mechanisms in control of susceptibility to autoimmune uveitic disease. Int. Rev. Immunol., 2002, Vol. 21, no. 2-3, pp. 89-100.

26. Gery I., Wiggert B., Redmond T. M., Kuwabara T., Crawford M.A., Vistica B.P. Uveoretinitis and pinealitis induced by immunization with interphotoreceptor retinoid-binding protein. Invest. Ophthalmol. Vis. Sci., 1986, Vol. 27, no. 8, pp. 1296-1300.

27. Gocho K., Kondo I., Yamaki K. Identification of autoreactive T cells in vogt-koyanagi-harada disease. Invest. Ophthalmol. Vis. Sci., 2001, Vol. 42, no. 9, pp. 2004-2009.

28. Gomes J.P., Watad A., Shoenfeld Y. Nicotine and autoimmunity: the lotus’ flower in tobacco. Pharmacol. Res., 2018, Vol. 128, pp. 101-109.

29. Goncalves R.B., Coletta R.D., Silverio K.G., Benevides L., Casati M.Z., da Silva J.S. Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm. Res., 2011, Vol. 60, no. 5. pp. 409-424.

30. González M.M., Solano M.M., Porco T.C., Oldenburg C.E., Acharya N.R., Lin S.C. Epidemiology of uveitis in a US population-based study. J. Ophthalmic. Inflamm. Infect., 2018, Vol. 8, no. 1, 6. doi: 10.1186/s12348-018-0148-5.

31. Gritz D.C., Wong I.G. Incidence and prevaence of uveitis in Northern California; the Northern California epidemiology of uveitis study. Ophthalmology, 2004, Vol. 111, no. 3, pp. 491-500.

32. Hallal P.C., Andersen L.B., Bull F.C., Guthold R., Haskell W., Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet, 2012, Vol. 380, no. 9838, pp. 247-257.

33. Ham D.I., Fujimoto C., Gentleman S., Chan C.C., Yu C.R., Yu S. The level of thymic expression of RPE65 inversely correlates with its capacity to induce Experimental Autoimmune Uveitis (EAU) in different rodent strains. Exp. Eye. Res., 2006, Vol. 83, pp. 897-902.

34. Hanyuda A., Rosner B.A., Wiggs J.L., Willett W.C., Tsubota K., Pasquale L.R., Kang J.H. Low-carbohydratediet scores and the risk of primary open-angle glaucoma: data from three US cohorts. Eye, 2020, Vol. 34, no. 8, pp. 1465-1475.

35. Heissigerova J., Seidler Stangova P., Klimova A., Svozilkova P., Hrncir T., Stepankova R. The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J. Immunol. Res., 2016, Vol. 2016, 5065703. doi: 10.1155/2016/5065703.

36. Hogquist K.A., Baldwin T.A., Jameson S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol., 2005, Vol. 5, no. 10, pp. 772-782.

37. Horai R., Caspi R.R. Microbiome and autoimmune uveitis. Front. Immunol., 2019, Vol. 10, 232. doi: 10.3389/fimmu.2019.00232.

38. Horai R., Silver P.B., Chen J., Agarwal R.K., Chong W.P., Jittayasothorn Y. Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen. J. Autoimmun., 2013, Vol. 44, pp. 21-33.

39. Horai R., Zárate-Bladés C.R., Dillenburg-Pilla P., Chen J., Kielczewski J.L., Silver P.B. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity, 2015, Vol. 43, no. 2, pp. 343-353.

40. Huang X., Ye Z., Cao Q., Su G., Wang Q., Deng J., Zhou C., Kijlstra A., Yang P. Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Invest. Ophthalmol. Vis. Sci., 2018, Vol. 59, no. 3, pp. 1523-1531.

41. Jangi S., Gandhi R., Cox L.M., Li N,, von Glehn F., Yan R., Patel B., Mazzola M.A., Liu S., Glanz B.L., Cook S., Tankou S., Stuart F., Melo K., Nejad P., Smith K., Topçuolu B.D., Holden J., Kivisäkk P., Chitnis T., de Jager P.L., Quintana FJ, Gerber G.K., Bry L., Weiner H.L Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun., 2016, Vol. 7, no. 1, 12015. doi: 10.1038/ncomms12015.

42. Jayasudha R., Kalyana Chakravarthy S., Sai Prashanthi G., Sharma S., Tyagi M., Shivaji S.. Implicating dysbiosis of the gut fungal microbiome in uveitis, an inflammatory disease of the eye. Invest. Ophthalmol. Vis. Sci., 2019, Vol. 60, no. 5, pp.1384-1393.

43. Jha P., Sohn J.H., Xu Q., Nishihori H., Wang Y., Nishihori S. The complement system plays a critical role in the development of experimental autoimmune anterior uveitis. Invest. Ophthalmol. Vis. Sci., 2006, Vol. 47, no. 3, pp. 1030-1038.

44. Kawazoe Y., Sugita S., Keino H., Yamada Y., Imai A., Horie S. Retinoic acid from retinal pigment epithelium induces T regulatory cells. Exp. Eye. Res., 2012, Vol. 94, no. 1, pp. 32-40.

45. Kim S.H., Burton J., Yu C.R., Sun L., He C., Wang H., Morse H.C., Egwuagu C.E. Dual function of the IRF8 transcription factor in autoimmune uveitis: loss of IRF8 in T cells exacerbates uveitis, whereas irf8 deletion in the retina confers protection. J. Immunol., 2015, Vol. 195, no. 4, pp.1480-1488.

46. Klein L., Klugmann M., Nave K.A., Tuohy V.K., Kyewski B. Shaping of the autoreactive T-cell Repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med., 2000, Vol. 6, no. 1, pp. 56-61.

47. Krishna U., Ajanaku D., Denniston A.K., GkikaT. Uveitis: a sight-threatening disease which can impact all systems. Postgrad. Med. J., 2017, Vol. 93, no. 1106, pp. 766-773.

48. Kronenberg M., Rudensky A. Regulation of immunity by self-reactive T cells. Nature, 2005, Vol. 435, no. 7042, pp. 598-604.

49. Kruk J., Kubasik-Kladna K., Aboul-Enein Y.H. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev. Med. Chem., 2015, Vol. 16, no. 3, pp. 241-257.

50. Lin P., Loh A.R., Margolis T.P., Acharya N.R. Cigarette smoking as a risk factor for uveitis. Ophthalmology, 2010, Vol. 117, no. 3, pp. 585-590.

51. Liu X., Lee Y.S., Yu C.R., Egwuagu C.E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol., 2008, Vol. 180, no. 9, pp. 6070-6076.

52. London N.J.S., Rathinam S.R., Cunningham E.T. The epidemiology of uveitis in developing countries. Int. Ophthalmol. Clin., 2010, Vol. 50, no. 2, 1-17.

53. Love P.E., Bhandoola A. Signal integration and crosstalk during thymocyte migration and emigration. Nat. Rev. Immunol., 2011, Vol. 11, no. 7, pp. 69-77.

54. Luger D., Caspi R.R. New perspectives on effector mechanisms in uveitis. Semin. Immunopathol., 2008, Vol. 30, pp. 135-143.

55. Malek Mahdavi A., Khabbazi A., Yaaghoobian B., Ghojazadeh M., Agamohammadi R., Kheyrollahiyan A. Cigarette smoking and risk of Behcet’s disease: a propensity score matching analysis. Mod. Rheumatol., 2019, Vol. 29, no. 4, pp. 633-639.

56. McAllister C.G., Wiggert B., Chader G.J., Kuwabara T., Gery I. Uveitogenic potential of lymphocytes sensitized to interphotoreceptor retinoid-binding protein. J. Immunol., 1987, Vol. 138, no. 5, pp. 1416-1420.

57. McMenamin P.G., Crewe J. Endotoxin-induced uveitis. Kinetics and phenotype of the inflammatory cell infiltrate and the response of the resident tissue macrophages and dendritic cells in the iris and ciliary body. Invest. Ophthalmol. Vis. Sci., 1995, Vol. 36, no. 10, pp. 1949-1959.

58. Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol., 1948, Vol. 29, no. 1, pp. 58-69.

59. Medawar P.B. Immunological Tolerance. Science, 1961, Vol. 133, no. 3449, pp. 303-306.

60. Miller F.W., Alfredsson L., Costenbader K.H., Kamen D.L., Nelson L.M., Norris J.M. Epidemiology of environmental exposures and human autoimmune diseases:findings from a national institute of environmental health sciences expert panel workshop. J. Autoimmun., 2012, Vol. 39, no. 4, pp. 259-271.

61. Miserocchi E., Fogliato G., Modorati G., Bandello F. Review on the worldwide epidemiology of uveitis. Eur. J. Ophthalmol., 2013, Vol. 23, no. 5, pp. 705-717.

62. Mölzer C., Heissigerova J., Wilson H.M., Kuffova L., Forrester J.V. Immune Privilege: The Microbiome and Uveitis. Front. Immunol., 2020, Vol. 11, 608377. doi: 10.3389/fimmu.2020.608377.

63. Mueller C., Macpherson A.J. Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut, 2006, Vol. 55, no. 2, pp. 276-284.

64. Muhammad F.Y., Peters K., Wang D., Lee D.J. Exacerbation of autoimmune uveitis by obesity occurs through the melanocortin 5 receptor. J. Leukoc. Biol., 2019, Vol. 106, no. 4, pp. 879-887.

65. Nakamura Y.K, Metea C., Kars J., Jansson J.K., Rosenbaum J.T., Lin P. Gut microbial alterations associated with protection from autoimmune uveitis. Invest. Ophthalmol., Vis. Sci., 2016, Vol. 57, no. 8, pp, 3747-3758.

66. Nita M., Grzybowski A. Smoking and eye pathologies. a systemic review. Part. I., Anterior eye segment pathologies. Curr. Pharma. Des., 2017, Vol. 23, no. 4, 629-638.

67. Nussenblatt R.B. The Natural History of Uveitis. Int. Ophthalmol., 1990, Vol. 14, no. 5-6, pp. 303-308.

68. Nussenblatt R.B., Mittal K.K., Ryan S., Green W.R., Maumenee A.E. Birdshot Retinochoroidopathy Associated With HLA-A29 Antigen and Immune Responsiveness to Retinal s-Antigen. Am. J. Ophthalmol., 1982, Vol. 94, no. 2, pp. 147-158.

69. Oh H.M., Yu C.R., Lee Y., Chan C.C., Maminishkis A., Egwuagu C.E. Autoreactive memory CD4+ T lymphocytes that mediate chronic uveitis reside in the bone marrow through STAT3-dependent mechanisms. J. Immunol., 2011, Vol. 187, no. 6, pp. 3338-3346.

70. Oladipupo F.O., Yu C.R., Olumuyide E., Jittaysothorn Y., Choi J.K., Egwuagu C.E. STAT3 Deficiency in B Cells Exacerbates Uveitis by Promoting Expansion of Pathogenic Lymphocytes and Suppressing Regulatory B Cells (Bregs) and Tregs. Sci. Rep., 2020, Vol. 10, no. 1, 16188. doi: 10.1038/s41598-020-73093-1.

71. Parks C.G., Miller F.W., Pollard K.M., Selmi C., Germolec D., Joyce K., Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int. J. Mol. Sci., 2014, Vol. 15, no. 8, pp. 14269-1497.

72. Prummel M.F., Wiersinga W.M. Smoking and risk of Graves’ disease. JAMA, 1993, Vol. 269, no. 4, pp. 479-482.

73. Pugliese A., Zeller M., Fernandez A. Jr., Zalcberg L.J., Bartlett R.J., Ricordi C., Pietropaolo M., Eisenbarth G.S., Bennett S.T., Patel D.D. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS Vntr-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet., 1997, Vol. 15, no. 3, pp. 293-297.

74. Rathinam S.R., Krishnadas R., Ramakrishnan R., Thulasiraj R.D., Tielsch J.M., Katz J. Population-based prevalence of uveitis in Southern India. Br. J. Ophthalmol., 2011, Vol. 95, no. 4, pp. 463-467.

75. Reddy A., Muhammad F., Lee D.J. Biological Therapies that Target Inflammatory Cytokines to Treat Uveitis. In: Rodriguez-Garcia A., Stephen Foster C. (eds.). Advances in the Diagnosis and Management of Uveitis. IntechOpen; 2019. IntechOpen; 2019. Available at: https://www.intechopen.com/chapters/64592.

76. Rinninella E., Mele M.C., Merendino N., Cintoni H., Anselmi G., Caporossi A. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gut(-) retina axis. Nutrients, 2018, Vol. 10, no. 11, 1677. doi: 10.3390/nu10111677.

77. Roep B.O. Autoreactive T cells in endocrine/organ-specific autoimmunity: why has progress been so slow? Springer Semin. Immunopathol., 2002, Vol. 24, no. 3, pp. 261-271.

78. Roesel M., Ruttig A., Schumacher C., Heinz C., Heiligenhaus A. Smoking complicates the course of noninfectious uveitis. Graefes Arch. Clin. Exp. Ophthalmol., 2011, Vol. 249, no. 6, pp. 903-907.

79. Rosenbaum J.T., Asquith M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat. Rev. Rheumatol., 2018, Vol. 14, no. 12, pp. 704-713.

80. Rosenbaum J.T. New developments in uveitis associated with HLA B27. Curr. Opin. Rheumatol., 2017, Vol. 29, no. 4, pp. 298-303.

81. Rosenbaum J.T., McDevitt H.O., Guss R.B., Egbert P.R. Endotoxin-induced uveitis in rats as a model for human disease. Nature, 1980, Vol. 286, no. 5773, pp. 611-613.

82. Rowan S., Jiang S., Korem T., Szymanski J., Chang ML., Szelog J, Cassalman C., Dasuri K., McGuire C., Nagai R., Du X.L., Brownlee M., Rabbani N., Thornalley P.J., Baleja J.D., Deik A.A., Pierce K.A., Scott J.M., Clish C.B., Smith D.E., Weinberger A., Avnit-Sagi T., Lotan-Pompan M., Segal E., Taylor A. In Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc. Natl Acad. Sci. USA, 2017, Vol. 114, no. 22, pp. E4472-E4481.

83. Sharif K., Watad A., Bragazzi N.L., Lichtbroun M., Amital H., Shoenfeld Y. Physical activity and autoimmune diseases: get moving and manage the disease. Autoimmun. Rev., 2018, Vol. 17, no. 1, pp. 53-72.

84. Shoda H., Yanai R., Yoshimura T., Nagai T., Kimura K., Sobrin L. Dietary omega-3 fatty acids suppress experimental autoimmune uveitis in association with inhibition of Th1 and Th17 cell function. PLoS One, 2015, Vol. 10, no. 9, e0138241. doi: 10.1371/journal.pone.0138241.

85. Sizmaz S., Küçükerdönmez C., Pinarci E.Y., Karalezli A., Canan H,. Yilmaz G. The effect of smoking on choroidal thickness measured by optical coherence tomography. Br. J. Ophthalmol., 2013, Vol. 97, no. 5, pp. 601-604.

86. Spencer S.P., Fragiadakis G.K., Sonnenburg J.L. Pursuing human-relevant gut microbiota immune interactions. Immunity, 2019, Vol. 51, no. 2, pp. 225-239.

87. Speyer C.B., Costenbader K.H. Cigarette smoking and the pathogenesis of systemic lupus erythematosus. Expert Rev. Clin. Immunol., 2018, Vol. 14, no. 6, pp. 481-487.

88. Takase H., Yu C.R., Mahdi R.M., Douek D.C., Dirusso G.B., Midgley F.M. Thymic expression of peripheral tissue antigens in humans: a remarkable variability among individuals. Int. Immunol. 2005, Vol. 17, no. 8, pp. 1131-1140.

89. Tarrant T.K., Silver P.B., Chan C.C., Wiggert B., Caspi RR. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J. Immunol., 1998, Vol. 161, no. 1, pp. 122-127.

90. Tarrant T.K., Silver P.B., Wahlsten J.L., Rizzo L.V., Chan C.C., Wiggert B. Interleukin 12 protects from a T Helper Type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J. Exp. Med., 1999, Vol. 189, no. 2, pp. 219-230.

91. Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet, 2018, Vol. 391, no. 10130, pp. 1622-1636.

92. Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity, 2014, Vol. 40, no. 6, pp. 833-842.

93. Thorne J.E., Daniel E., Jabs D.A., Kedhar S.R., Peters G.B., Dunn J.P. Smoking as a risk factor for cystoid macular edema complicating intermediate uveitis. Am. J. Ophthalmol., 2008, Vol. 145, no. 5, pp. 841-846.

94. Thorne J.E., Suhler E., Skup M., Tari S., Macaulay D., Chao J. Prevalence of noninfectious uveitis in the United States: a claimsbased analysis. JAMA Ophthalmol., 2016, Vol. 134, no. 11, pp. 1237-1245.

95. Trujillo-Vargas C.M., Schaefer L., Alam J., Pflugfelder S.C., Britton R.A., de Paiva C.S. The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocul. Surf., 2020, Vol. 18, no. 2, pp. 335-344.

96. Uchi S.H., Yanai R., Kobayashi M., Hatano M., Kobayashi Y., Yamashiro C. Dendritic cells mediate the anti inflammatory action of omega-3 long-chain polyunsaturated fatty acids in experimental autoimmune uveitis. PLoS One, 2019, Vol. 14, no. 7, e0219405. doi: 10.1371/journal.pone.0219405.

97. van Kooij B., Probst K., Fijnheer R., Roest M., deLoos W., Rothova A. Risk factors for cystoid macular oedema in patients with uveitis. Eye, 2008, Vol. 22, no. 2, pp. 256-260.

98. Versini M, Jeandel P.Y., Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases:not a passive bystander. Autoimmun. Rev., 2014, Vol. 13, no. 9, pp. 981-1000.

99. Vignali D.A., Kuchroo V.K. Il-12 family cytokines: immunological playmakers. Nat. Immunol., 2012, Vol. 13, no. 8, pp. 722-728.

100. Wacker W.B., Donoso L.A., Kalsow C.M., Yankeelov J.A. Jr., Organisciak D.T. Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J. Immunol., 1977, Vol. 119, no. 6, pp. 1949-1958.

101. Wang X., Wei Y., Xiao H., Liu X., Zhang Y., Han G, Chen G., Hou C., Ma N., Shen B., Li Y., Egwuagu C.E., Wang R.A. A Novel IL-23p19/Ebi3 (Il-39) cytokine mediates inflammation in lupus-like mice. Eur. J. Immunol., 2016, Vol. 46, no. 6, pp. 1343-1350.

102. Wen C., Zheng Z., Shao T., Liu L., Xie Z., Le Chatelier E. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol., 2017, Vol. 18, no. 1, 142. doi: 10.1186/s13059-017-1271-6.

103. Wildner G., Diedrichs-Möhring M. Autoimmune uveitis andntigenic mimicry of environmental antigens. Autoimmun. Rev., 2004, Vol. 3, no. 5, pp. 383-387.

104. Yang P., Wan W., Du L., Zhou Q., Qi J., Liang L., Wang C., Wu L., Kijlstra A. Clinical Features of HLA-B27- positive acute anterior uveitis with or without ankylosing spondylitis in a chinese cohort. Br. J. Ophthalmol., 2018, Vol. 102, no. 2, pp. 215-219.

105. Ye Z., Zhang N., Wu C., Zhang X., Wang Q., Huang X.,Du L., Cao Q., Tang J., Zhou C., Hou S., He Y., Xu Q., Xiong X., Kijlstra A., Qin N., Yang P. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome, 2018, Vol. 6, no. 1, 135. doi: 10.1186/s40168-018-0520-6.

106. Yu C.R., Hayashi K., Lee Y.S., Mahdi R.M., Shen de F., Chan C.C., Egwuagu C.E. Suppressor of Cytokine Signaling 1 (SOCS1) mitigates anterior uveitis and confers protection against ocular HSV-1 Infection. Inflammation, 2015, Vol. 38, no. 2, pp. 555-565.

107. Yuan N., Li J., Tang S., Li F.F., Lee C.O.,Cheung C.Y., Tham C.C., Pang C.P., Chen L.J., Yam J.C. Association of secondhand smoking exposure with choroidal thinning in children aged 6 to 8 years: the hong kong children eye study. JAMA Ophthalmol., 2019, Vol. 137, no. 12, pp. 1406-1414.

108. Yuen B.G., Tham V.M., Browne E.N., Weinrib R., Borkar D.S., Parker J.V., Uchida A., Vinoya A.C., Acharya N.R. Association between smoking and uveitis: results from the pacific ocular inflammation study. Ophthalmology, 2015, Vol. 122, no. 6, pp. 1257-1261.

109. Zamiri P., Masli S., Kitaichi N., Taylor A.W., Streilein J.W. Thrombospondin plays a vital role in the immune privilege of the eye. Invest. Ophthalmol. Vis. Sci., 2005, Vol. 46, no. 3, pp. 908-919.

110. Zamiri P., Masli S., Streilein J.W., Taylor A.W. Pigment epithelial growth factor suppresses inkim shflammation by modulating macrophage activation. Invest. Ophthalmol. Vis. Sci., 2006, Vol. 47, no. 9, pp. 3912-3918.

111. Zigler J.S. Jr., Mochizuki M., Kuwabara T., Gery I. Purification of retinal s-antigen to homogeneity by the criterion of gel electrophoresis silver staining. Invest. Ophthalmol. Vis. Sci., 1984, Vol. 25, no. 8, pp. 977-980.


Supplementary files

Review

For citations:


Shirinsky I.V., Shirinsky V.S. Autoimmune uveitis: risk factors and issues of immunopathogenesis. Medical Immunology (Russia). 2025;27(1):7-20. (In Russ.) https://doi.org/10.15789/1563-0625-AUR-2956

Views: 509


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)