Effect of rifampicin on Toll-like receptor system gene expression in brain structures of rats with prenatal alcohol exposure
https://doi.org/10.15789/1563-0625-EOR-2935
Abstract
Alcohol intake during pregnancy may affect the normal course of fetal development, causing the symptoms of fetal alcohol spectrum disorders (FASD). There is evidence that a number of prenatal pathologic conditions exhibit altered expression of several pro- and anti-inflammatory cytokines. In our study, we focused on studying expression of numerous pro- and anti-inflammatory cytokine genes in the forebrain and temporal regions of rat brain during the postnatal development, thus modeling prenatal alcohol exposure effects (PAE). We also evaluated expression of genes associated with regulation of genes controlling expression of pro- and anti-inflammatory cytokines. Moreover, the objectives of our study included pharmacological correction of the observed changes by rifampicin (Rif), a potential pharmacological agent which had a neuroprotective effect shown by other studies,. The experimental model of PAE was produced by oral intake of 15% ethanol solution to pregnant female rats throughout pregnancy. The drug injections were performed to the pups from the 1 to the 7 postnatal days. Brain structures were sampled for gene expression analysis on the 8 postnatal day. The results of the study showed distinct changes in Tlr3 and Tlr4 gene expression in anterior and temporal lobes of brain on the 8 day of postnatal development. Expression of Myd88 and Ticam genes showed multidirectional changes among the studied brain structures of PAE rats. The increased mRNA level of proinflammatory genes was noted. Usage of Rif in experiments showed the ability of Rif (50 mg/kg) to correct the observed long-term pathological changes in the expression of the genes under study. It is of interest to study the dose-dependent effect in the future, as well as to investigate the revealed changes at the level of protein analysis. In future studies, it seems important to evaluate TLR signaling system in other brain structures with PAE, as well as at different terms of postnatal development in ontogenesis.
About the Authors
M. I. AirapetovRussian Federation
Marat I. Airapetov, PhD (Medicine), Associate Professor, Leading Research Associate, Laboratory of Biochemical Pharmacology; Lecturer, Department of Pathological Physiology
12 Acad. Pavlov St St. Petersburg 197376
Phone: +7 (952) 269-22-20
S. O. Eresko
Russian Federation
Eresko S.O., Research Associate, Laboratory of Chemistry and Pharmacology of Drugs
St. Petersburg
A. A. Mikhailova
Russian Federation
Mikhailova A.A., 4th year Student
St. Petersburg
D. D. Sukhanova
Russian Federation
Sukhanova D.D., 4th year Student
St. Petersburg
P. D. Ignatova
Russian Federation
Ignatova P.D., 5th year Student
St. Petersburg
A. A. Lebedev
Russian Federation
Lebedev A.A., PhD, MD (Biology), Professor, Head, Laboratory of General Pharmacology
St. Petersburg
E. R. Bychkov
Russian Federation
Bychkov E.R., PhD, MD (Medicine), Head, Laboratory of Chemistry and Pharmacology of Drugs
St. Petersburg
P. D. Shabanov
Russian Federation
Shabanov P.D., PhD, MD (Medicine), Professor, Department of Pharmacology; Head, S. Anichkov Department of Neuropharmacology
St. Petersburg
References
1. Ayrapetyants M.G. Consequences of alcohol intoxication for offspring]. Moscow: Nauka, 1989, 124 p
2. Airapetov M.I., Eresko S.O., Bychkov E.R., Lebedev A.A., Shabanov P.D. Expression of the gene Hmgb1 changes in the striatum and amygdala of the rat brain during prolonged alcoholization and ethanol withdrawal. Biomeditsinskaya khimiya = Biomedical Chemistry, 2021, Vol. 67, no. 1, pp. 95-99. (In Russ.)
3. Airapetov M.I., Eresko S.O., Lebedev A.A., Bychkov E.R., Shabanov P.D. Involvement of TOLL-like receptors in the neuroimmunology of alcoholism. Biomeditsinskaya khimiya = Biomedical Chemistry, 2020, Vol. 66, no. 3, pp. 208-215. (In Russ.)
4. Airapetov M.I., Eresko S.O., Bychkov E.R., Lebedev A.A., Shabanov P.D. The expression level of Toll-like receptors changes in the emotiogenic brain structures of rats under conditions of prolonged alcoholization and ethanol withdrawal. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, Vol. 22, no. 1, pp. 77-86. (In Russ.)
5. Airapetov M.I., Eresko S.O., Kochkin D.V., Bychkov E.R., Lebedev A.A., Shabanov P.D. Ginsenosides affect the system of Toll-like receptors in the brain of rats under conditions of long-term alcohol withdrawal. Biomeditsinskaya khimiya = Biomedical Chemistry, 2022, Vol. 68, no. 6, pp. 459-469. (In Russ.)
6. Airapetov M., Eresko S., Ignatova P., Lebedev A., Bychkov E., Shabanov P. Effect of rifampicin on TLR4- signaling pathways in the nucleus accumbens of the rat brain during abstinence of long-term alcohol treatment. Alcohol. Alcohol., 2024, Vol. 59, no. 3, agae016. doi: 10.1093/alcalc/agae016.
7. Alfonso-Loeches S., Pascual-Lucas M., Blanco A.M., Sanchez-Vera I., Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J. Neurosci., 2010, Vol. 30, no. 24, pp. 8285-8295.
8. Ali A.E., Mahdy H.M., Elsherbiny D.M., Azab S.S. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem. Pharmacol., 2018, Vol. 156, pp. 431-443.
9. Bell R.L., Hauser S.R., McClintick J., Rahman S., Edenberg H.J., Szumlinski K.K., McBride W.J. EthanolAssociated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. Prog. Mol. Biol. Transl. Sci., 2016, Vol. 137, pp. 41-85.
10. Bi W., Cheng X., Zeng Z., Zhou R., Luo R., Zhang J., Zhu L. Rifampicin ameliorates lipopolysaccharideinduced cognitive and motor impairments via inhibition of the TLR4/MyD88/NF-B signaling pathway in mice. Neurol. Res., 2021, Vol. 43, no. 5, pp. 358-371.
11. Bi W., Zhu L., Jing X., Zeng Z., Liang Y., Xu A., Liu J., Xiao S., Yang L., Shi Q., Guo L., Tao E. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol. Med. Rep., 2014, Vol. 10, no. 4, pp. 1793-1799.
12. Blednov Y.A., Ponomarev I., Geil C., Bergeson S., Koob G.F., Harris R.A. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict. Biol., 2012, Vol. 17, no. 1, pp. 108-120.
13. Bodnar T.S., Raineki C., Wertelecki W., Yevtushok L., Plotka L., Zymak-Zakutnya N., Honerkamp-Smith G., Wells A., Rolland M., Woodward T.S., Coles C.D., Kable J.A., Chambers C.D., Weinberg J. Altered maternal immune networks are associated with adverse child neurodevelopment: Impact of alcohol consumption during pregnancy. Brain Behav. Immun., 2018, Vol. 73, pp. 205-215.
14. Caraci F., Gulisano W., Guida C.A., Impellizzeri A.A.R., Drago F., Puzzo D., Palmeri A.A. Key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci. Rep., 2015, Vol. 5, 11252. doi: 10.1038/srep11252.
15. Chen T., Chen C., Zhang Z., Zou Y., Peng M., Wang Y. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice. Brain Behav. Immun., 2016, Vol. 56, pp. 42-55.
16. Chin P.Y., Dorian C., Sharkey D.J., Hutchinson M.R., Rice K.C., Moldenhauer L.M., Robertson S.A. Tolllike receptor-4 antagonist (+)-naloxone confers sexually dimorphic protection from inflammation-induced fetal programming in mice. Endocrinology, 2019, Vol. 160, no. 11, pp. 2646-2662.
17. Clabough E., Ingersoll J., Reekes T., Gleichsner A., Ryan A. Acute ethanol exposure during synaptogenesis rapidly alters medium spiny neuron morphology and synaptic protein expression in the dorsal striatum. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, pp. 290.
18. Coleman L.G. Jr, Zou J., Crews F.T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanolinduced neurotoxicity via TLR7. J. Neuroinflammation, 2017, Vol. 14, no. 1, 22. doi: 10.1186/s12974-017-0799-4.
19. Couch A.C.M., Berger T., Hanger B., Matuleviciute R., Srivastava D.P., Thuret S., Vernon A.C. Maternal immune activation primes deficiencies in adult hippocampal neurogenesis. Brain Behav. Immun., 2021, Vol. 97, pp. 410-422.
20. Darbinian N., Darbinyan A., Merabova N., Bajwa A., Tatevosian G., Martirosyan D., Zhao H., Selzer M.E., Goetzl L. Ethanol-mediated alterations in oligodendrocyte differentiation in the developing brain. Neurobiol. Dis., 2021, Vol. 148, 105181. doi: 10.1016/j.nbd.2020.105181.
21. Donzis E.J., Tronson N.C. Modulation of learning and memory by cytokines: Signaling mechanisms and long-term consequences. Neurobiol. Learn. Mem., 2014, Vol. 115, pp. 68-77.
22. Ferguson C., McKay M., Harris R.A., Homanics G.E. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation. Alcohol, 2013, Vol. 47, no. 8, pp. 595-599.
23. Gano A., Lebonville C.L., Becker H.C. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. Am. J. Drug Alcohol Abuse, 2023, Vol. 49, pp. 290-301.
24. Holmes V.A., Wallace J.M., Gilmore W.S., McFaul P., Alexander H.D. Plasma levels of the immunomodulatory cytokine interleukin-10 during normal human pregnancy: a longitudinal study. Cytokine, 2003, Vol. 21, pp. 265-269.
25. Hong A.R., Jang J.G., Chung Y.C., Won S.Y., Jin B.K. Interleukin 13 on Microglia is Neurotoxic in Lipopolysaccharide-injected Striatum in vivo. Exp. Neurobiol., 2022, Vol. 31, no. 1, pp. 42-53.
26. Kaul D., Habbel P., Derkow K., Krüger C., Franzoni E., Wulczyn F.G., Bereswill S., Nitsch R., Schott E., Veh R., Naumann T., Lehnardt S. Expression of Toll-like receptors in the developing brain. PLoS One, 2012, Vol. 7, no. 5, e37767. doi: 10.1371/journal.pone.0037767.
27. Lawrimore C.J., Coleman L.G., Crews F.T. Ethanol induces interferon expression in neurons via TRAIL: role of astrocyte-to-neuron signaling. Psychopharmacology (Berl.), 2019, Vol. 236, no. 10, pp. 2881-2897.
28. Lawrimore C.J., Coleman L.G., Zou J., Crews F.T. Ethanol induction of innate immune signals across BV2 microglia and SH-SY5Y neuroblastoma involves induction of IL-4 and IL-13. Brain Sci., 2019, Vol. 9, no. 9, 228. doi: 10.3390/brainsci9090228.
29. Li Q., Liu D., Pan F., Ho C.S.H., Ho R.C.M. Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus. Neural Plast., 2019, Vol. 2019, 1648736. doi: 10.1155/2019/1648736.
30. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods., 2001, Vol. 25, no. 4, pp. 402-408.
31. Lobo-Silva D., Carriche G.M., Gil Castro A., Roque S., Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J. Neuroinflammation, 2016, Vol. 13, 2081. doi: 10.1186/s12974-016-0763-8.
32. MacDowell K.S., Munarriz-Cuezva E., Caso J.R., Madrigal J.L., Zabala A., Meana J.J., García-Bueno B., Leza J.C. Paliperidone reverts Toll-like receptor 3 signaling pathway activation and cognitive deficits in a maternal immune activation mouse model of schizophrenia. Neuropharmacology, 2017, Vol. 116, pp. 196-207.
33. Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, Vol. 25, pp. 677-686.
34. Maroso M., Balosso S., Ravizza T., Liu J., Bianchi M.E., Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J. Intern. Med., 2011, Vol. 270, no. 4, pp. 319-326.
35. Mattson S.N., Bernes G.A., Doyle L.R. Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol Clin. Exp. Res., 2019, Vol. 43, no. 6, pp. 1046-1062.
36. Meyer U., Murray P.J., Urwyler A., Yee B.K., Schedlowski M., Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated antiinflammatory signaling. Mol. Psychiatry, 2008, Vol. 13, pp. 208-221.
37. Mori S., Sugama S., Nguyen W., Michel T., Sanna M.G., Sanchez-Alavez M., Cintron-Colon R., Moroncini G., Kakinuma Y., Maher P., Conti B. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. J. Neuroinflammation, 2017, Vol. 14, 88. doi: 10.1186/s12974-017-0862-1
38. Mousa A., Seiger A., Kjaeldgaard A., Bakhiet M. Human first trimester forebrain cells express genes for inflammatory and anti-inflammatory cytokines. Cytokine, 1999, Vol. 11, pp. 55–60.
39. Nolvi S., Merz E.C., Kataja E.L., Parsons C.E. Prenatal Stress and the Developing Brain: Postnatal Environments Promoting Resilience. Biol. Psychiatry, 2023, Vol. 93, no. 10, pp. 942-952.
40. Ochoa-Repáraz J., Rynda A., Ascón M.A., Yang X., Kochetkova I., Riccardi C., Callis G., Trunkle T., Pascual D.W. IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. J. Immunol., 2008, Vol. 181, pp. 954-968.
41. O’Loughlin E., Pakan J.M.P., Yilmazer-Hanke D., McDermott K.W. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J. Neuroinflammation, 2017, Vol. 14, no. 1, 212. doi: 10.1186/s12974-017-0981-8.
42. Qin L., Zou J., Barnett A., Vetreno R.P., Crews F.T., Coleman L.G.Jr. TRAIL mediates neuronal death in AUD: a link between neuroinflammation and neurodegeneration. Int. J. Mol. Sci., 2021, Vol. 22, no. 5, 2547. doi: 10.3390/ijms22052547.
43. Riley E.P., Infante M.A., Warren K.R. Fetal alcohol spectrum disorders: an overview. Neuropsychol. Rev., 2011, Vol. 21, pp. 73-78.
44. Rizzo M.D., Crawford R.B., Bach A., Sermet S., Amalfitano A., Kaminski N.E. Imiquimod and interferonalpha augment monocyte-mediated astrocyte secretion of MCP-1, IL-6 and IP-10 in a human co-culture system. J. Neuroimmunol., 2019, Vol. 333, 576969. doi: 10.1016/j.jneuroim.2019.576969.
45. Shenoda B.B. An overview of the mechanisms of abnormal GABAergic interneuronal cortical migration associated with prenatal ethanol exposure. Neurochem. Res., 2017, Vol. 42, no. 5, pp. 1279-1287.
46. Shin W.H., Lee D.Y., Park K.W., Kim S.U., Yang M.S., Joe E.H., Jin B.K. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia, 2004, Vol. 46, no. 2, pp. 142-152.
47. Shukla P.K., Meena A.S., Rao R., Rao R. Deletion of TLR-4 attenuates fetal alcohol exposure-induced gene expression and social interaction deficits. Alcohol, 2018, Vol. 73, pp. 73-78.
48. Siegel A., Zalcman S.S. The neuroimmunological basis of behavior and mental disorders. New York: Springer, 2008. 454 p.
49. Sowell K.D., Uriu-Adams J.Y., Van de Water J., Chambers C.D., Coles C.D., Kable J.A., Yevtushok L., ZymakZakutnya N., Wertelecki W., Keen C.L. Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). Implications of altered maternal cytokine concentrations on infant outcomes in children with prenatal alcohol exposure. Alcohol, 2018, Vol. 68, pp. 49-58.
50. Usui N., Kobayashi H., Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int. J. Mol. Sci., 2023, Vol. 24, no. 6, 5487.
51. Vetreno R.P., Crews F.T. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and toll-like receptors in the adult prefrontal cortex. Neuroscience, 2012, Vol. 226, pp. 475-488.
52. Vivien D., Ali C. Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev., 2006, Vol. 17, pp. 121-128.
53. Vizuete A.F.K., Mussulini B.H., Zenki K.C., Baggio S., Pasqualotto A., Rosemberg D.B., Bogo M.R., Oliveira D.L., Rico E.P. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology, 2021, Vol. 88, pp. 57-64.
54. Wang P., Liu B.Y., Wu M.M., Wei X.Y., Sheng S., You S.W., Shang L.X., Kuang F. Moderate prenatal alcohol exposure suppresses the TLR4-mediated innate immune response in the hippocampus of young rats. Neurosci. Lett., 2019, Vol. 699, pp. 77-83.
55. Wang X., Grace P.M., Pham M.N., Cheng K., Strand K.A., Smith C., Li J., Watkins L.R., Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J., 2013, Vol. 27, no. 7, pp. 2713-2722.
56. Woods R.M., Lorusso J.M., Potter H.G., Neill J.C., Glazier J.D., Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci. Biobehav. Rev., 2021, Vol. 129, pp. 389-421.
57. Zahednasab H., Firouzi M., Kaboudanian-Ardestani S., Mojallal-Tabatabaei Z., Karampour S., Keyvani H. The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine, 2019, Vol. 113, pp. 417-426.
58. Zhou X., Spittau B., Krieglstein K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J. Neuroinflammation, 2012, Vol. 9, 210.
Supplementary files
Review
For citations:
Airapetov M.I., Eresko S.O., Mikhailova A.A., Sukhanova D.D., Ignatova P.D., Lebedev A.A., Bychkov E.R., Shabanov P.D. Effect of rifampicin on Toll-like receptor system gene expression in brain structures of rats with prenatal alcohol exposure. Medical Immunology (Russia). 2025;27(1):75-86. (In Russ.) https://doi.org/10.15789/1563-0625-EOR-2935