Immune сheckpoints in the context of external genital endometriosis
https://doi.org/10.15789/1563-0625-ICI-2923
Abstract
Endometriosis is a chronic recurrent disease with insufficiently studied pathogenesis. Endometriosis is known to share similar features with tumors. Thus, the outgrowth of endometrium-like tissue outside the uterus is the main feature of this condition. The dysfunction of local immune response is required for cell proliferation and invasion in ectopic sites. The involvement of immune checkpoints is among the mechanisms allowing avoidance of immune surveillance shown for the tumors. Immune checkpoints are presented by proteins expressed on immune cells (most on T cells). The checkpoint binding to its ligand expressed on immune cells leads to its functional inhibition and, thus, facilitates survival of tumor cells. The data about immune checkpoints, e.g., CTLA-4, PD-1, LAG-3, Tim-3, TIGIT, 4-1BB, GITR are summarized in this review. Their ligands (CD80/CD86, PD-1L, Gal-3, Gal-9) are also described. The review article contains information about cells expressing checkpoints and other proteins involved, We also discuss the examples of tumors using such checkpoint-ligand interactions in order to avoid recognition by immune cells. Furthermore, the review describes immune checkpoint inhibitors currently used in cancer therapy. Due to scarce knowledge about endometriosis pathogenesis, the only diagnostics of this condition is laparoscopic surgery with visualization of ectopic loci and histological study of biopsies. The studies of some biomarkers for non-invasive diagnosis of endometriosis, such as CA-125, MCP-1, IL-6, BDNF etc. are also discussed in this review. The authors describe some studies which concern immune checkpoints in the context of endometriosis. Noteworthy an elevated expression of some checkpoints by T cells was found, along with elevated concentration of their soluble forms in blood of women with endometriosis. The review also includes the studies showing significant sensitivity and specificity of immune checkpoint ligand measurement in patients with endometriosis. Hence, investigation of immune checkpoints as a potential mechanism to avoid immune reaction used by endometriotic cells, and its application as a biomarker for non-invasive diagnostics is a promising direction for the further studies.
About the Authors
A. S. BelevichRussian Federation
Belevich A.S., Junior Research Associate, Department of Gynecology and Endocrinology
St. Petersburg
M. I. Yarmolinskaya
Russian Federation
Yarmolinskaya M.I., PhD, MD (Medicine), Professor, Professor of the Russian Academy of Sciences, Head, Department of Gynecology and Endocrinology, Head, Center for Diagnostics and Treatment of Endometriosis
St. Petersburg
S. A. Selkov
Russian Federation
Selkov S.A., PhD, MD (Medicine), Professor, Honored Scientist of the Russian Federation, Head, Department of Immunology and Intercellular Communications; Professor, Department of Immunology
St. Petersburg
D. I. Sokolov
Russian Federation
Sokolov D.I., PhD, MD (Biology), Associate Professor, Head, Laboratory of Intercellular Communications; Professor, Department of Immunology
St. Petersburg
References
1. Bogolyubova A.V., Efimov G.A., Drutskaya M.S., Nedospasov S.A. Сancer immunotherapy based on the blockade of immune checkpoints. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 5, pp. 395-406. (In Russ.) doi: 10.15789/1563-0625-2015-5-395-406.
2. Gershtein E.S., Utkin D.O., Goryacheva I.O., Khulamkhanova M.M., Petrikova N.A., Vinogradov I.I., Alferov A.A., Stilidi I.S., Kushlinskii N.E. Soluble forms of immune checkpoint receptor PD-1 and its ligand PD-L1 in plasma of patients with ovarian neoplasms. Almanakh klinicheskoy meditsiny = Almanac of Clinical Medicine, 2018, Vol. 46, pp. 690-698. (In Russ.)
3. Darenskaya A.D., Rumyantsev A.A., Gutorov S.L., Tyulyandina A.S. Evolution of systemic therapy for disseminated endometrial cancer: literature review. Zlokachestvennye opukholi = Malignant Tumours, 2023, Vol.13, no. 2, pp. 80-98. (In Russ.)
4. Kovaleva O.V., Belova T.P., Kushlinsky D.N., Korotkova E.A., Podlesnaya P.A., Grachev A.N., Zinoviev S.V., Tereshkina I.V., Sokolov N.Yu., Kudlai D.A., Kushlinsky N.E. Soluble forms of immune checkpoints in ovarian cancer. Klinicheskaya laboratornaya diagnostika = Russian Clinical Laboratory Diagnostics, 2021, Vol. 66, no. 2, pp. 80-86. (In Russ.)
5. Kushlinskii N.E., Gershtein E.S., Goryatcheva I.O., Morozov A.A., Alferov A.A., Bezhanova S.D., Kazantseva I.A., Bazaev V.V., Matveev V.B. Soluble forms of the immune check-point receptor PD-1 and its ligand PD-L1 in blood serum of patients with renal cell carcinoma: clinical and pathologic correlations. Onkourologiya = Cancer Urology, 2019, Vol. 15, no. 1, pp. 15-22. (In Russ.)
6. Lyadova M.A., Lyadov V.K. Immune-mediated adverse events in immune checkpoint inhibitors therapy: literature review. Sovremennaya onkologiya = Journal of Modern Oncology, 2021, Vol. 23, no. 2, pp. 319-326. (In Russ.)
7. Mansorunov D.Z., Alimov A.A., Apanovich N.V., Kuzevanova A.Yu., Bogush T.A., Stilidi I.S., Karpukhin A.V. Gastric cancer immunotherapy. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy, 2019, Vol. 18, no. 4, pp. 6-16. (In Russ.)
8. Poddubskaya E.V., Sekacheva M.I., Guryanova A.A. Endocrine adverse events of immune checkpoint inhibitors: results of a single-center study. Sechenovskiy vestnik = Sechenov Medical Journal, 2019, Vol. 10, no. 4, pp. 4-11. (In Russ.)
9. Chetveryakov A.V., Tsepelev V.L. Pathogenetic signifi cance of LAG-3 in patients with colorectal cancer. Rossiyskie biomeditsinskie issledovaniya = Russian Biomedical Research, 2023, Vol. 8, no. 2, pp. 12-17. (In Russ.)
10. Shubnikova E.V, Bukatina T.M., Velts N.Yu., Kaperko D.A., Kutekhova G.V. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Bezopasnost i risk farmakoterapii = Safety and Risk of Pharmacotherapy, 2020, Vol. 8, no. 1, pp. 9-22. (In Russ.)
11. Abdala-Saleh N., Lugassy J., Shivakumar-Kalvhati A., Turky A., Abu Ras S., Razon H., Berger N., Bar-On D., Bar-On Y., Taura T., Wilson D., Karin N. PD-1 and CTLA-4 serve as major gatekeepers for effector and cytotoxic T-cell potentiation by limiting a CXCL9/10-CXCR3-IFNgamma positive feedback loop. Front. Immunol., 2024, Vol. 15, 1452212. doi: 10.3389/fimmu.2024.1452212.
12. Abramiuk M., Bebnowska D., Hrynkiewicz R., Polak P.N.G., Kotarski J., Rolinski J., Grywalska E. CLTA-4 Expression is associated with the maintenance of chronic inflammation in endometriosis and infertility. Cells, 2021, Vol. 10, no. 3, 487. 10.3390/cells10030487.
13. Abramiuk M., Frankowska K., Kulak K., Tarkowski R., Mertowska P., Mertowski S., Grywalska E. Possible Correlation between Urocortin 1 (Ucn1) and immune parameters in patients with endometriosis. Int. J. Mol. Sci., 2023, Vol. 24, no. 9, 7787. doi: 10.3390/ijms24097787.
14. Agic A., Djalali S., Wolfler M.M., Halis G., Diedrich K., Hornung D. Combination of CCR1 mRNA, MCP1, and CA125 measurements in peripheral blood as a diagnostic test for endometriosis. Reprod. Sci., 2008, Vol. 15, no. 9, pp. 906-911.
15. Akinboro O., Larkins E., Pai-Scherf L.H., Mathieu L.N., Ren Y., Cheng J., Fiero M.H., Fu W., Bi Y., Kalavar S., Jafri S., Mishra-Kalyani P.S., Fourie Zirkelbach J., Li H., Zhao H., He K., Helms W.S., Chuk M.K., Wang M., Bulatao I., Herz J., Osborn B.L., Xu Y., Liu J., Gong Y., Sickafuse S., Cohen R., Donoghue M., Pazdur R., Beaver J.A., Singh H. FDA Approval Summary: Pembrolizumab, Atezolizumab, and Cemiplimab-rwlc as Single Agents for First-Line Treatment of Advanced/Metastatic PD-L1-High NSCLC. Clin Cancer Res., 2022, Vol. 28, no. 11, pp. 2221-2228.
16. Alsharedi M., Srivastava R., Elmsherghi N. Durvalumab for the treatment of urothelial carcinoma. Drugs Today (Barc.), 2017, Vol. 53, no. 12, pp. 647-652.
17. Anglesio M.S., Papadopoulos N., Ayhan A., Nazeran T.M., Noe M., Horlings H.M., Lum A., Jones S., Senz J., Seckin T., Ho J., Wu R.C., Lac V., Ogawa H., Tessier-Cloutier B., Alhassan R., Wang A., Wang Y., Cohen J.D., Wong F., Hasanovic A., Orr N., Zhang M., Popoli M., McMahon W., Wood L.D., Mattox A., Allaire C., Segars J., Williams C., Tomasetti C., Boyd N., Kinzler K.W., Gilks C.B., Diaz L., Wang T.L., Vogelstein B., Yong P.J., Huntsman D.G., Shih I.M. Cancer-Associated Mutations in Endometriosis without Cancer. N. Engl. J. Med., 2017, Vol. 376, no. 19, pp. 1835-1848.
18. Arabpour M., Ghods A., Shariat M., Talei A.R., Mehdipour F.,Ghaderi A. Correlation of 4-1BBL+ B Cells in Tumor Draining Lymph Nodes with Pathological Characteristics of Breast Cancer. Iran J. Immunol., 2019, Vol. 16, no. 2, pp. 108-116.
19. Atkinson V., Khattak A., Haydon A., Eastgate M., Roy A., Prithviraj P., Mueller C., Brignone C., Triebel F. Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J. Immunother. Cancer, 2020, Vol. 8, no. 2, e001681. doi: 10.1136/jitc-2020-001681.
20. Azimnasab-Sorkhabi P., Soltani-Asl M.,Kfoury Junior J.R. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in tumor cells. Hum. Cell, 2023, Vol. 36, no. 4, pp. 1225-1232.
21. Baptista M.Z., Sarian L.O., Derchain S.F., Pinto G.A., Vassallo J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum. Pathol., 2016, Vol. 47, no. 1, pp. 78-84.
22. Bardhan K., Anagnostou T., Boussiotis V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol., 2016, Vol. 7, 550. doi: 10.3389/fimmu.2016.00550.
23. Barra F., Ferro Desideri L., Leone Roberti Maggiore U., Gaetano Vellone V., Maramai M., Scala C., Ferrero S. Endometriosis classification and the role of tumor necrosis factor-alpha polymorphisms as a therapeutic target. Int. J. Fertil. Steril., 2020, Vol. 14, no. 1, pp. 76-77.
24. Bartkowiak T., Curran M.A. 4-1BB Agonists: multi-potent potentiators of tumor immunity. Front. Oncol., 2015, Vol. 5, 117. doi: 10.3389/fonc.2015.00117.
25. Bettini M., Szymczak-Workman A.L., Forbes K., Castellaw A.H., Selby M., Pan X., Drake C.G., Korman A.J., Vignali D.A. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J. Immunol., 2011, Vol. 187, no. 7, pp. 3493-3498.
26. Borrelli G.M., Abrao M.S., Mechsner S. Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum. Reprod., 2014, Vol. 29, no. 2, pp. 253-266.
27. Brinton L.A., Gridley G., Persson I., Baron J., Bergqvist A. Cancer risk after a hospital discharge diagnosis of endometriosis. Am. J. Obstet. Gynecol., 1997, Vol. 176, no. 3, pp. 572-579.
28. Brinton L.A., Sakoda L.C., Sherman M.E., Frederiksen K., Kjaer S.K., Graubard B.I., Olsen J.H., Mellemkjaer L. Relationship of benign gynecologic diseases to subsequent risk of ovarian and uterine tumors. Cancer Epidemiol. Biomarkers Prev., 2005, Vol. 14, no. 12, pp. 2929-2935.
29. Brubel R., Bokor A., Pohl A., Schilli G.K., Szereday L., Bacher-Szamuel R., Rigo J. Jr., Polgar B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil. Steril., 2017, Vol. 108, no. 6, pp. 1016-1025e2.
30. Burghaus S., Drazic P., Wolfler M., Mechsner S., Zeppernick M., Meinhold-Heerlein I., Mueller M.D., Rothmund R., Vigano P., Becker C.M., Zondervan K.T., Beckmann M.W., Fasching P.A., Berner-Gatz S., Grunewald F.S., Hund M., Kastner P., Klammer M., Laubender R.P., Wegmeyer H., Wienhues-Thelen U.H., Renner S.P. Multicenter evaluation of blood-based biomarkers for the detection of endometriosis and adenomyosis: A prospective non-interventional study. Int. J. Gynaecol. Obstet., 2023, Vol. 164, no. 1, pp. 305-314.
31. Cakir Y., Talu C.K., Trabulus D.C., Mermut O. The immunohistochemical Galectin-3 expression in tumor and cancer-associated fibroblasts in invasive ductal carcinomas of breast and their relationship with clinicopathological parameters. Indian J. Pathol. Microbiol., 2023, Vol. 66, no. 3, pp. 456-464.
32. Canales Rojas R. Update on immunotherapy for renal cancer. Medwave, 2021, Vol. 21, no. 5, e8202. doi: 10.5867/medwave.2021.05.8202.
33. Cao Y., Zhou X., Huang X., Li Q., Gao L., Jiang L., Huang M., Zhou J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One, 2013, Vol. 8, no. 1, e53834. doi: 10.1371/journal.pone.0053834.
34. Caserta D., Di Benedetto L., Bordi G., D’Ambrosio A., Moscarini M. Levels of Galectin-3 and Stimulation Expressed Gene 2 in the peritoneal fluid of women with endometriosis: a pilot study. Gynecol. Endocrinol., 2014, Vol. 30, no. 12, pp. 877-880.
35. Chambers C.A., Kuhns M.S., Egen J.G., Allison J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol., 2001, Vol. 19, pp. 565-594.
36. Chattopadhyay S., Chakraborty N.G. GITR expression on T-cell receptor-stimulated human CD8 T cell in a JNK-dependent pathway. Indian J. Hum. Genet., 2009, Vol. 15, no. 3, pp. 121-124.
37. Chen S., Liu Y., Zhong Z., Wei C., Liu Y., Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front. Immunol., 2023, Vol. 14, 1134663. doi: 10.3389/fimmu.2023.1134663.
38. Chen T., Wei J.L., Leng T., Gao F., Hou S.Y. The diagnostic value of the combination of hemoglobin, CA199, CA125, and HE4 in endometriosis. J. Clin. Lab. Anal., 2021, Vol. 35, no. 9, e23947. doi: 10.1002/jcla.23947.
39. Chen W.C., Cheng C.M., Liao W.T., Chang T.C. Urinary Biomarkers for Detection of Clinical Endometriosis or Adenomyosis. Biomedicines, 2022, Vol. 10, no. 4, 833. doi: 10.3390/biomedicines10040833.
40. Chen X., Du Y., Hu Q., Huang Z. Tumor-derived CD4+CD25+ regulatory T cells inhibit dendritic cells function by CTLA-4. Pathol. Res. Pract., 2017, Vol. 213, no. 3, pp. 245-249.
41. Chen Z., Huang J., Kwak-Kim J., Wang W. Immune checkpoint inhibitors and reproductive failures. J. Reprod. Immunol., 2023, Vol. 156, 103799. doi: 10.1016/j.jri.2023.103799.
42. Cheng L.S., Cheng Y.F., Liu W.T., Shen A., Zhang D., Xu T., Yin W., Cheng M., Ma X., Wang F., Zhao Q., Zeng X., Zhang Y., Shen G. A humanized 4-1BB-targeting agonistic antibody exerts potent antitumor activity in colorectal cancer without systemic toxicity. J. Transl. Med., 2022, Vol. 20, no. 1, 415. doi: 10.1186/s12967-022-03619-w.
43. Chester C., Ambulkar S., Kohrt H.E. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol. Immunother., 2016, Vol. 65, no. 10, pp. 1243-1248.
44. Chester C., Sanmamed M.F., Wang J., Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood, 2018, Vol. 131, no. 1, pp. 49-57. doi: 10.1007/s00262-016-1829-2.
45. Choi Y.S., Kim S., Oh Y.S., Cho S., Hoon Kim S. Elevated serum interleukin-32 levels in patients with endometriosis: A cross-sectional study. Am. J. Reprod. Immunol., 2019, Vol. 82, no. 2, e13149. doi: 10.1111/aji.13149.
46. Claus C., Ferrara-Koller C., Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs, 2023, Vol. 15, no. 1, 2167189. doi: 10.1080/19420862.2023.2167189.
47. Collins J.M., Gulley J.L. Product review: avelumab, an anti-PD-L1 antibody. Hum. Vaccin. Immunother., 2019, Vol. 15, no. 4, pp. 891-908.
48. Contardi E., Palmisano G.L., Tazzari P.L., Martelli A.M., Fala F., Fabbi M., Kato T., Lucarelli E., Donati D., Polito L., Bolognesi A., Ricci F., Salvi S., Gargaglione V., Mantero S., Alberghini M., Ferrara G.B., Pistillo M.P. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer, 2005, Vol. 117, no. 4, pp. 538-550.
49. Daud A.I., Wolchok J.D., Robert C., Hwu W.J., Weber J.S., Ribas A., Hodi F.S., Joshua A.M., Kefford R., Hersey P., Joseph R., Gangadhar T.C., Dronca R., Patnaik A., Zarour H., Roach C., Toland G., Lunceford J.K., Li X.N., Emancipator K., Dolled-Filhart M., Kang S.P., Ebbinghaus S., Hamid O. Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. J. Clin. Oncol., 2016, Vol. 34, no. 34, pp. 4102-4109.
50. De Mello R.A.B., Voscaboinik R., Luciano J.V.P., Cremonese R.V., Amaral G.A., Castelo-Branco P., Antoniou G. Immunotherapy in Patients with Advanced Non-Small Cell Lung Cancer Lacking Driver Mutations and Future Perspectives. Cancers (Basel), 2021, Vol. 14, no. 1, 122. doi: 10.3390/cancers14010122.
51. Duan X., Liu J., Cui J., Ma B., Zhou Q., Yang X., Lu Z., Du Y., Su C. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol. Med. Rep., 2019, Vol. 20, no. 4, pp. 3773-3781.
52. Dumic J., Dabelic S., Flogel M. Galectin-3: an open-ended story. Biochim. Biophys. Acta, 2006, Vol. 1760, no. 4, pp. 616-635.
53. Eggermont A.M., Robert C. New drugs in melanoma: it’s a whole new world. Eur. J. Cancer, 2011, Vol. 47, no. 14, pp. 2150-2157.
54. Eurich K., De La Cruz P., Laguna A., Woodman M., McAdams J., Lips E., Ebott J., DiSilvestro J., Ribeiro J., James N. Multiplex serum immune profiling reveals circulating LAG-3 is associated with improved patient survival in high grade serous ovarian cancer. Gynecol. Oncol., 2023, Vol. 174, pp. 200-207.
55. Finkelmeier F., Waidmann O., Trojan J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev. Anticancer Ther., 2018, Vol. 18, no. 12, pp. 1169-1175.
56. Geng H., Zhang G.M., Xiao H., Yuan Y., Li D., Zhang H., Qiu H., He Y.F., Feng Z.H. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer, 2006, Vol. 118, no. 11, pp. 2657-2664.
57. Gu Q., Li J., Chen Z., Zhang J., Shen H., Miao X., Zhou Y., Xu X., He S. Expression and Prognostic Significance of PD-L2 in Diffuse Large B-Cell Lymphoma. Front. Oncol., 2021, Vol. 11, 664032. doi: 10.3389/fonc.2021.664032.
58. Guney G., Taskin M.I., Lagana A.S., Tolu E., Aslan F., Hismiogullari A.A., Kaya C. Neutrophil gelatinaseassociated lipocalin serum level: A potential noninvasive biomarker of endometriosis? Medicine (Baltimore), 2023, Vol. 102, no. 41, e35539. doi: 10.1097/MD.0000000000035539.
59. Guo B., Chen J.H., Zhang J.H., Fang Y., Liu X.J., Zhang J., Zhu H.Q., Zhan L. Pattern-recognition receptors in endometriosis: A narrative review. Front. Immunol., 2023, Vol. 14, 1161606. doi: 10.3389/fimmu.2023.1161606.
60. Gurney A.L., Marsters S.A., Huang R.M., Pitti R.M., Mark D.T., Baldwin D.T., Gray A.M., Dowd A.D., Brush A.D., Heldens A.D., Schow A.D., Goddard A.D., Wood W.I., Baker K.P., Godowski P.J., Ashkenazi A. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol., 1999, Vol. 9, no. 4, pp. 215-218.
61. Hafler D.A., Kuchroo V. TIMs: central regulators of immune responses. J. Exp. Med., 2008, Vol. 205, no. 12, pp. 2699-2701.
62. Hamanishi J., Mandai M., Iwasaki M., Okazaki T., Tanaka Y., Yamaguchi K., Higuchi T., Yagi H., Takakura K., Minato N., Honjo T., Fujii S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA, 2007, Vol. 104, no. 9, pp. 3360-3365.
63. He Y., Jia K., Dziadziuszko R., Zhao S., Zhang X., Deng J., Wang H., Hirsch F.R., Zhou C. Galectin-9 in nonsmall cell lung cancer. Lung Cancer, 2019, Vol. 136, pp. 80-85.
64. He Y., Rivard C.J., Rozeboom L., Yu H., Ellison K., Kowalewski A., Zhou C., Hirsch F.R. Lymphocyteactivation gene-3, an important immune checkpoint in cancer. Cancer Sci., 2016, Vol. 107, no. 9, pp. 1193-1197.
65. Hemon P., Jean-Louis F., Ramgolam K., Brignone C., Viguier M., Bachelez H., Triebel F., Charron D., Aoudjit F., Al-Daccak R., Michel L. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J. Immunol., 2011, Vol. 186, no. 9, pp. 5173-5183.
66. Hicks C., Leonardi M., Chua X.Y., Mari-Breedt L., Espanda M., El-Omar E.M., Condous G., El-Assaad F. Oral, Vaginal, and Stool Microbial Signatures in Patients with Endometriosis as Potential Diagnostic Non-Invasive Biomarkers: A Prospective Cohort Study. BJOG, 2024. doi: 10.1111/1471-0528.17979.
67. Hong J.H., Cho H.W., Ouh Y.T., Lee J.K., Chun Y. Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer. J. Gynecol. Oncol., 2023, Vol. 34, no. 2, e18. doi: 10.3802/jgo.2023.34.e18.
68. Huang R.Y., Francois A., McGray A.R., Miliotto A., Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology, 2017, Vol. 6, no. 1, e1249561. doi: 10.1080/2162402X.2016.1249561.
69. Huo J.L., Wang Y.T., Fu W.J., Lu N., Liu Z.S. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front. Immunol., 2022, Vol. 13, 956090. doi: 10.3389/fimmu.2022.95609.
70. Incognito G.G., Di Guardo F., Gulino F.A., Genovese F., Benvenuto D., Lello C., Palumbo M. Interleukin-6 as A Useful Predictor of Endometriosis-Associated Infertility: A Systematic Review. Int. J. Fertil. Steril., 2023, Vol. 17, no. 4, pp. 226-230.
71. Jansa V., Pusic Novak M., Ban Frangez H., Rizner T.L. TGFBI as a candidate biomarker for non-invasive diagnosis of early-stage endometriosis. Hum. Reprod., 2023, Vol. 38, no. 7, pp. 1284-1296.
72. Jarollahi S., Chaichian S., Jarollahi A., Hajmohammadi R., Mashayekhi R., Shahmohammadi F., Eslamivaghar M., Ghasemi Z. The Diagnostic Accuracy of Galectin-9 for Diagnosis of Endometriosis in Comparison with Laparoscopy. J. Reprod. Infertil., 2022, Vol. 23, no. 4, pp. 271-278.
73. Jeung I., Cheon K., Kim M.R. Decreased cytotoxicity of peripheral and peritoneal natural killer cell in endometriosis. Biomed Res. Int., 2016, Vol. 2016, e2916070. doi: 10.1155/2016/2916070.
74. Jiang J., Jiang Z., Xue M. Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol. Endocrinol., 2019, Vol. 35, no. 7, pp. 571-575. doi: 10.1080/09513590.2018.1554034.
75. Jolicoeur C., Boutouil M., Drouin R., Paradis I., Lemay A., Akoum A. Increased expression of monocyte chemotactic protein-1 in the endometrium of women with endometriosis. Am. J. Pathol., 1998, Vol. 152, no. 1, pp. 125-133.
76. Kang C. Retifanlimab: First Approval. Drugs, 2023, Vol. 83, no. 8, pp. 731-737.
77. Kang Y.J., Jeung I.C., Park A., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I., Yoon S.R. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum. Reprod., 2014, Vol. 29, no. 10, pp. 2176-2189.
78. Kaya C., Alay I., Guraslan H., Gedikbasi A., Ekin M., Ertas Kaya S., Oral E., Yasar L. The Role of Serum Caspase 3 Levels in Prediction of Endometriosis Severity. Gynecol. Obstet. Invest., 2018, Vol. 83, no. 6, pp. 576-585.
79. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, Vol. 26, pp. 677-704.
80. Kimber-Trojnar Z., Pilszyk A., Niebrzydowska M., Pilszyk Z., Ruszala M., Leszczynska-Gorzelak B. The potential of non-invasive biomarkers for early diagnosis of asymptomatic patients with endometriosis. J. Clin. Med., 2021, Vol. 10, no. 13, e2762. doi: 10.3390/jcm10132762.
81. Kong F., Jin M., Cao D., Jia Z., Liu Y., Jiang J. Galectin-3 not Galectin-9 as a candidate prognosis marker for hepatocellular carcinoma. PeerJ, 2020, Vol. 8, e9949. doi: 10.7717/peerj.9949.
82. Kovalak E.E., Karacan T., Zengi O., Karabay Akgul O., Ozyurek S.E., Guraslan H. Evaluation of new biomarkers in stage III and IV endometriosis. Gynecol. Endocrinol., 2023, Vol. 39, no. 1, 2217290. doi: 10.1080/09513590.2023.2217290.
83. Krummel M.F.,Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, Vol. 182, no. 2, pp. 459-465.
84. Laudanski P., Rogalska G., Warzecha D., Lipa M., Manka G., Kiecka M., Spaczynski R., Piekarski P., Banaszewska B., Jakimiuk A., Issat T., Rokita W., Mlodawski J., Szubert M., Sieroszewski P., Raba G., Szczupak K., Kluz T., Kluza M., Neuman T., Adler P., Peterson H., Salumets A., Wielgos M. Autoantibody screening of plasma and peritoneal fluid of patients with endometriosis. Hum. Reprod., 2023, Vol. 38, no. 4, pp. 629-643.
85. Lee M.Y., Kim S.H., Oh Y.S., Heo S.H., Kim K.H., Chae H.D., Kim C.H., Kang B.M. Role of interleukin-32 in the pathogenesis of endometriosis: in vitro, human and transgenic mouse data. Hum. Reprod., 2018, Vol. 33, no. 5, pp. 807-816.
86. Li C., Zhou J., Shao J., Yuan L., Cheng Q., Wang L., Duan Z. Decrease in CD226 expression on CD4(+) T cells in patients with endometriosis. Biosci. Trends, 2023, Vol. 17, no. 2, pp. 168-171.
87. Li J., Yan S., Li Q., Huang Y., Ji M., Jiao X., Yuan M., Wang G. Macrophage-associated immune checkpoint CD47 blocking ameliorates endometriosis. Mol. Hum. Reprod., 2022, Vol. 28, no. 5, gaac010. doi: 10.1093/molehr/gaac010.
88. Li Y., Zhang J., Zhang D., Hong X., Tao Y., Wang S., Xu Y., Piao H., Yin W., Yu M., Zhang Y., Fu Q., Li D., Chang X., Du M. Tim-3 signaling in peripheral NK cells promotes maternal-fetal immune tolerance and alleviates pregnancy loss. Sci. Signal, 2017, Vol. 10, no. 498, eaah4323. doi: 10.1126/scisignal.aah4323.
89. Liu Q., Ma P., Liu L., Ma G., Ma J., Liu X., Liu Y., Lin W., Zhu Y. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model. Eur. J. Pharm. Sci., 2017, Vol. 96, pp. 542-550.
90. Lozano E., Dominguez-Villar M., Kuchroo V., Hafler D.A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol., 2012, Vol. 188, no. 8, pp. 3869-3875.
91. Mahnke K., Enk A.H. TIGIT-CD155 Interactions in Melanoma: A Novel Co-Inhibitory Pathway with Potential for Clinical Intervention. J. Invest. Dermatol., 2016, Vol. 136, no. 1, pp. 9-11.
92. Man Y., Dai C., Guo Q., Jiang L., Shi Y. A novel PD-1/PD-L1 pathway molecular typing-related signature for predicting prognosis and the tumor microenvironment in breast cancer. Discov. Oncol., 2023, Vol. 14, no. 1, 59. doi: 10.1007/s12672-023-00669-4.
93. Martin-Liberal J., Kordbacheh T., Larkin J. Safety of pembrolizumab for the treatment of melanoma. Expert Opin. Drug Saf., 2015, Vol. 14, no. 6, pp. 957-964.
94. Martire F.G., Russo C., Selntigia A., Nocita E., Soreca G., Lazzeri L., Zupi E., Exacoustos C. Early noninvasive diagnosis of endometriosis: dysmenorrhea and specific ultrasound findings are important indicators in young women. Fertil. Steril., 2023, Vol. 119, no. 3, pp. 455-464.
95. Maruhashi T., Sugiura D., Okazaki I.M., Okazaki T. LAG-3: from molecular functions to clinical applications. J. Immunother. Cancer, 2020, Vol. 8, no. 2, e001014. doi: 10.1136/jitc-2020-001014.
96. Matalliotakis I., Neonaki M., Zolindaki A., Hassan E., Georgoulias V., Koumantakis E. Changes in immunologic variables (TNF-a, sCD8 and sCD4) during danazol treatment in patients with endometriosis. Int. J. Fertil. Womens Med., 1997, Vol. 42, no. 3, pp. 211-214.
97. Matsubara E., Shinchi Y., Komohara Y., Yano H., Pan C., Fujiwara Y., Ikeda K., Suzuki M. PD-L2 overexpression on tumor-associated macrophages is one of the predictors for better prognosis in lung adenocarcinoma. Med. Mol. Morphol., 2023, Vol. 56, no. 4, pp. 250-256.
98. Meggyes M., Szereday L., Bohonyi N., Koppan M., Szegedi S., Marics-Kutas A., Marton M., Totsimon A., Polgar B. Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int. J. Mol. Sci., 2020, Vol. 21, no. 7, 2343. doi: 10.3390/ijms21072343.
99. Mikus M., Goldstajn M.S., Brlecic I., Dumancic S., Lagana A.S., Chiantera V., Vujic G., Coric M. CTLA4-Linked Autoimmunity in the Pathogenesis of Endometriosis and Related Infertility: A Systematic Review. Int. J. Mol. Sci., 2022, Vol. 23, no. 18, 10902. doi: 10.3390/ijms231810902.
100. Motamedi M., Shahbaz S., Fu L., Dunsmore G., Xu L., Harrington R., Houston S., Elahi S. Galectin-9 Expression Defines a Subpopulation of NK Cells with Impaired Cytotoxic Effector Molecules but Enhanced IFNgamma Production, Dichotomous to TIGIT, in HIV-1 Infection. Immunohorizons, 2019, Vol. 3, no. 11, pp. 531-546.
101. Muharam R., Bustami A., Gusti Mansur I., Zulkifli Jacoeb T., Giustiniani J., Schiavon V., Bensussan A. Cytotoxic activity of peripheral blood mononuclear cells in patients with endometriosis: A cross-sectional study. Int. J. Reprod. Biomed., 2022, Vol. 20, no. 8, pp. 691-700.
102. Murakami D., Matsuda K., Iwamoto H., Mitani Y., Mizumoto Y., Nakamura Y., Matsuzaki I., Iwamoto R., Takahashi Y., Kojima F., Murata S.I., Yamaue H. Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS One, 2022, Vol. 17, no. 3, e0265908. doi: 10.1371/journal.pone.0265908.
103. Mutti L., Valle M.T., Balbi B., Orengo A.M., Lazzaro A., Alciato P., Gatti E., Betta P.G., Pozzi E. Primary human mesothelioma cells express class II MHC, ICAM-1 and B7-2 and can present recall antigens to autologous blood lymphocytes. Int. J. Cancer, 1998, Vol. 78, no. 6, pp. 740-749.
104. Naseri S., Rosenberg-Hasson Y., Maecker H.T., Avrutsky M.I., Blumenthal P.D. A cross-sectional study comparing the inflammatory profile of menstrual effluent vs. peripheral blood. Health Sci. Rep., 2023, Vol. 6, no. 1, e1038. doi: 10.1002/hsr2.1038.
105. Nasr S., Haddad F.G., Khazen J., Kattan J., Trak-Smayra V. PD-L1 protein expression by Combined Positive Score (CPS) in patients with muscle invasive or advanced urothelial carcinoma: a single institution experience. BMC Cancer, 2023, Vol. 23, no. 1, 817. doi: 10.1186/s12885-023-11299-y.
106. Neumann M., Murphy N., Seetharamu N. The Evolving Role of PD-L1 Inhibition in Non-Small Cell Lung Cancer: A Review of Durvalumab and Avelumab. Cancer Med. J., 2022, Vol. 5, no. 1, pp. 31-45.
107. Nomi T., Sho M., Akahori T., Hamada K., Kubo A., Kanehiro H., Nakamura S., Enomoto K., Yagita H., Azuma M., Nakajima Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res., 2007, Vol. 13, no. 7, pp. 2151-2157.
108. Oksasoglu B., Hepokur C., Misir S., Yildiz C., Sonmez G., Yanik A. Determination of PD-1 expression in peripheral blood cells in patients with endometriosis. Gynecol. Endocrinol., 2021, Vol. 37, no. 2, pp. 157-161.
109. Olkowska-Truchanowicz J., Bialoszewska A., Zwierzchowska A., Sztokfisz-Ignasiak A., Janiuk I., Dabrowski F., Korczak-Kowalska G., Barcz E., Bocian K., Malejczyk J. Peritoneal Fluid from Patients with Ovarian Endometriosis Displays Immunosuppressive Potential and Stimulates Th2 Response. Int. J. Mol. Sci., 2021, Vol. 22, no. 15, 8134. doi: 10.3390/ijms22158134.
110. Ortiz C.N., Torres-Reveron A., Appleyard C.B. Metabolomics in endometriosis: challenges and perspectives for future studies. Reprod. Fertil., 2021, Vol. 2, no. 2, pp. R35-R50.
111. Othman Eel D., Hornung D., Salem H.T., Khalifa E.A., El-Metwally T.H., Al-Hendy A. Serum cytokines as biomarkers for nonsurgical prediction of endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2008, Vol. 137, no. 2, pp. 240-246.
112. Othman E.R., Hornung D., Hussein M., Abdelaal I.I., Sayed A.A., Fetih A.N., Al-Hendy A. Soluble tumor necrosis factor-alpha receptors in the serum of endometriosis patients. Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, Vol. 200, pp. 1-5.
113. Oyama R., Kanayama M., Mori M., Matsumiya H., Taira A., Shinohara S., Takenaka M., Yoneda K., Kuroda K., Tanaka F. CD155 expression and its clinical significance in non-small cell lung cancer. Oncol. Lett., 2022, Vol. 23, no. 5, 166. doi; 10.3892/ol.2022.13286
114. Pan H.Y., Wan J. Serum HSF1 is upregulated in endometriosis patients and serves as a potential diagnostic biomarker. Kaohsiung J. Med. Sci., 2023, Vol. 39, no. 10, pp. 1045-1051.
115. Popovici R.M., Krause M.S., Germeyer A., Strowitzki T., von Wolff M. Galectin-9: a new endometrial epithelial marker for the mid- and late-secretory and decidual phases in humans. J. Clin. Endocrinol. Metab., 2005, Vol. 90, no. 11, pp. 6170-6176.
116. Qi H., Li Y., Liu X., Jiang Y., Li Z., Xu X., Zhang H., Hu X. Tim-3 regulates the immunosuppressive function of decidual MDSCs via the Fyn-STAT3-C/EBPbeta pathway during Toxoplasma gondii infection. PLoS Pathog., 2023, Vol. 19, no. 4, e1011329. doi: 10.1371/journal.ppat.1011329.
117. Raschi E., Comito F., Massari F.,Gelsomino F. Relatlimab and nivolumab in untreated advanced melanoma: insight into RELATIVITY. Immunotherapy, 2023, Vol. 15, no. 2, pp. 85-91.
118. Rondon L., Fu R., Patel M.R. Success of checkpoint blockade paves the way for novel immune therapy in malignant pleural mesothelioma. Cancers (Basel), 2023, Vol. 15, no. 11, 2940. doi: 10.3390/cancers15112940.
119. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res, 2019, Vol. 38, no. 1, 255. doi: 10.1186/s13046-019-1259-z.
120. Sansone A.M., Hisrich B.V., Young R.B., Abel W.F., Bowens Z., Blair B.B., Funkhouser A.T., Schammel D.P., Green L.J., Lessey B.A., Blenda A.V. Evaluation of BCL6 and SIRT1 as non-invasive diagnostic markers of endometriosis. Curr. Issues Mol. Biol., 2021, Vol. 43, no. 3, pp. 1350-1360.
121. Santoso B., Sa’adi A., Dwiningsih S.R., Tunjungseto A., Widyanugraha M.Y.A., Mufid A.F., Rahmawati N.Y., Ahsan F. Soluble immune checkpoints CTLA-4, HLA-G, PD-1, and PD-L1 are associated with endometriosisrelated infertility. Am. J. Reprod. Immunol., 2020, Vol. 84, no. 4, e13296. doi: 10.1111/aji.13296.
122. Shafrir A.L., Farland L.V., Shah D.K., Harris H.R., Kvaskoff M., Zondervan K., Missmer S.A. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, Vol. 51, pp. 1-15.
123. Shah M., Osgood C.L., Amatya A.K., Fiero M.H., Pierce W.F., Nair A., Herz J., Robertson K.J., Mixter B.D., Tang S., Pazdur R., Beaver J.A., Amiri-Kordestani L. FDA approval summary: pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple-negative breast cancer. Clin. Cancer Res., 2022, Vol. 28, no. 24, pp. 5249-5253.
124. Shigesi N., Kvaskoff M., Kirtley S., Feng Q., Fang H., Knight J.C., Missmer S.A., Rahmioglu N., Zondervan K.T., Becker C.M. The association between endometriosis and autoimmune diseases: a systematic review and metaanalysis. Hum. Reprod. Update, 2019, Vol. 25, no. 4, pp. 486-503.
125. Simone R., Pesce G., Antola P., Rumbullaku M., Bagnasco M., Bizzaro N., Saverino D. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed. Res. Int., 2014, Vol. 2014, 215763. doi: 10.1155/2014/215763.
126. Souza D.S., Macheroni C., Pereira G.J.S., Vicente C.M., Porto C.S. Molecular regulation of prostate cancer by Galectin-3 and estrogen receptor. Front. Endocrinol. (Lausanne), 2023, Vol. 14, 1124111. doi: 10.3389/fendo.2023.1124111.
127. Stanietsky N., Simic H., Arapovic J., Toporik A., Levy O., Novik A., Levine Z., Beiman M., Dassa L., Achdout H., Stern-Ginossar N., Tsukerman P., Jonjic S., Mandelboim O. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA, 2009, Vol. 106, no. 42, pp. 17858-17863.
128. Stasenko M., Smith E., Yeku O., Park K.J., Laster I., Lee K., Walderich S., Spriggs E., Rueda B., Weigelt B., Zamarin D., Rao T.D., Spriggs D.R. Targeting galectin-3 with a high-affinity antibody for inhibition of high-grade serous ovarian cancer and other MUC16/CA-125-expressing malignancies. Sci. Rep., 2021, Vol. 11, no. 1, 3718. doi: 10.1038/s41598-021-82686-3.
129. Suszczyk D., Skiba W., Zardzewialy W., Pawlowska A., Wlodarczyk K., Polak G., Tarkowski R., Wertel I. Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int. J. Mol. Sci., 2022, Vol. 23, no. 19, 11607. doi: 10.3390/ijms231911607.
130. Suzman D.L., Agrawal S., Ning Y.M., Maher V.E., Fernandes L.L., Karuri S., Tang S., Sridhara R., Schroeder J., Goldberg K.B., Ibrahim A., McKee A.E., Pazdur R., Beaver J.A. FDA approval summary: atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist, 2019, Vol. 24, no. 4, pp. 563-569.
131. Sznol M. Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy. Cancer J., 2014, Vol. 20, no. 4, pp. 290-295.
132. Tahermanesh K., Hakimpour S., Govahi A., Rokhgireh S., Mehdizadeh M., Minaeian S., Barati M., Chaichian S., Kashi A.M., Nassiri S., Eslahi N., Ajdary M., Ahmadi M. Evaluation of expression of biomarkers of PLAGL1 (ZAC1), microRNA, and their non-coding RNAs in patients with endometriosis. J. Gynecol. Obstet. Hum. Reprod., 2023, Vol. 52, no. 4, 102568. doi: 10.1016/j.jogoh.2023.102568.
133. Tanaka E., Sendo F., Kawagoe S., Hiroi M. Decreased natural killer cell activity in women with endometriosis. Gynecol. Obstet. Invest., 1992, Vol. 34, no. 1, pp. 27-30.
134. Tang T., Lai H., Huang X., Gu L.,Shi H. Application of serum markers in diagnosis and staging of ovarian endometriosis. J. Obstet. Gynaecol. Res., 2021, Vol. 47, no. 4, pp. 1441-1450.
135. Tella S.H., Kommalapati A., Mahipal A., Jin Z. First-Line Targeted therapy for hepatocellular carcinoma: role of atezolizumab/bevacizumab combination. Biomedicines, 2022, Vol. 10, no. 6, 1304. doi: 10.3390/biomedicines10061304.
136. Timmerman J., Herbaux C., Ribrag V., Zelenetz A.D., Houot R., Neelapu S.S., Logan T., Lossos I.S., Urba W., Salles G., Ramchandren R., Jacobson C., Godwin J., Carpio C., Lathers D., Liu Y., Neely J., Suryawanshi S., Koguchi Y., Levy R. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma. Am. J. Hematol., 2020, Vol. 95, no. 5, pp. 510-520.
137. Vellanki P.J., Mulkey F., Jaigirdar A.A., Rodriguez L., Wang Y., Xu Y., Zhao H., Liu J., Howe G., Wang J., Choo Q., Golding S.J., Mansell V., Korsah K., Spillman D., de Claro R.A., Pazdur R., Beaver J.A., Singh H. FDA Approval Summary: Nivolumab with Ipilimumab and Chemotherapy for Metastatic Non-small Cell Lung Cancer, A Collaborative Project Orbis Review. Clin. Cancer Res., 2021, Vol. 27, no. 13, pp. 3522-3527.
138. Vence L., Bucktrout S.L., Fernandez Curbelo I., Blando J., Smith B.M., Mahne A.E., Lin J.C., Park T., Pascua E., Sai T., Chaparro-Riggers J., Subudhi S.K., Scutti J.B., Higa M.G., Zhao H., Yadav S.S., Maitra A., Wistuba I.I., Allison J.P., Sharma P. Characterization and Comparison of GITR Expression in Solid Tumors. Clin. Cancer Res., 2019, Vol. 25, no. 21, pp. 6501-6510.
139. Villanacci R., Bandini V., Ottolina J., Pagliardini L., Candiani M., Vigano P. The pathogenesis of endometriosis: clues from the immunological evidence. Minerva Obstet. Gynecol., 2021, Vol. 73, no. 3, pp. 275-282.
140. Vinay D.S., Kwon B.S. 4-1BB signaling beyond T cells. Cell. Mol. Immunol., 2011, Vol. 8, no. 4, pp. 281-284.
141. von Euw E., Chodon T., Attar N., Jalil J., Koya R.C., Comin-Anduix B., Ribas A. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med., 2009, Vol. 7, 35. doi: 10.1186/1479-5876-7-35.
142. Walankiewicz M., Grywalska E., Polak G., Korona-Glowniak I., Witt E., Surdacka A., Kotarski J., Rolinski J. The increase of circulating PD-1- and PD-L1-expressing lymphocytes in endometriosis: correlation with clinical and laboratory parameters. Mediators Inflamm, 2018, Vol. 2018, 7041342. doi: 10.1155/2018/7041342.
143. Wang X.B., Fan Z.Z., Anton D., Vollenhoven A.V., Ni Z.H., Chen X.F., Lefvert A.K. CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation. BMC Immunol., 2011, Vol. 12, 21. doi: 10.1186/1471-2172-12-21.
144. Wang Y., Du J., Gao Z., Sun H., Mei M., Wang Y., Ren Y., Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br. J. Cancer, 2023, Vol. 128, no. 7, pp. 1196-1207.
145. Wang Y., Feng T., Li H., Xiong Y., Tao Y. Gal-9/Tim-3 signaling pathway activation suppresses the generation of Th17 cells and promotes the induction of Foxp3(+) regulatory T cells in renal ischemia-reperfusion injury. Mol. Immunol., 2023, Vol. 156, pp. 136-147.
146. Warzecha D., Zalecka J., Manka G., Kiecka M., Lipa M., Spaczynski R., Piekarski P., Banaszewska B., Jakimiuk A., Issat T., Rokita W., Mlodawski J., Szubert M., Sieroszewski P., Raba G., Szczupak K., Kluz T., Kluza M., Wielgos M., Oldak L., Lesniewska A., Gorodkiewicz E., Laudanski P. Plasma and peritoneal fluid fibronectin and collagen IV levels as potential biomarkers of endometriosis. Int. J. Mol. Sci., 2022, Vol. 23, no. 24, 15669. doi: 10.3390/ijms232415669.
147. Wessels J.M., Kay V.R., Leyland N.A., Agarwal S.K., Foster W.G. Assessing brain-derived neurotrophic factor as a novel clinical marker of endometriosis. Fertil. Steril., 2016, Vol. 105, no. 1, pp. 119-128e1-5.
148. Wiles K.N., Tsikretsis L.E., Alioto C.M., Hermida de Viveiros P.A., Villaflor V.M., Tetreault M.P. GITR agonistic stimulation enhances the anti-tumor immune response in a mouse model of ESCC. Carcinogenesis, 2022, Vol. 43, no. 9, pp. 908-918.
149. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, Vol. 322, no. 5899, pp. 271-275.
150. Wroblewski J.M., Bixby D.L., Borowski C., Yannelli J.R. Characterization of human non-small cell lung cancer (NSCLC) cell lines for expression of MHC, co-stimulatory molecules and tumor-associated antigens. Lung Cancer, 2001, Vol. 33, no. 2-3, pp. 181-94.
151. Wu L., Lv C., Su Y., Li C., Zhang H., Zhao X., Li M. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol. Gynecol. Endocrinol., 2019, Vol. 35, no. 3, pp. 251-256.
152. Xu F., Liu J., Liu D., Liu B., Wang M., Hu Z., Du X., Tang L., He F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res., 2014, Vol. 74, no. 13, pp. 3418-3428.
153. Xu J.X., Maher V.E., Zhang L., Tang S., Sridhara R., Ibrahim A., Kim G., Pazdur R. FDA approval summary: nivolumab in advanced renal cell carcinoma after anti-angiogenic therapy and exploratory predictive biomarker analysis. Oncologist, 2017, Vol. 22, no. 3, pp. 311-317.
154. Xue C., Zhu D., Chen L., Xu Y., Xu B., Zhang D., Jiang J. Expression and prognostic value of PD-L1 and PDL2 in ovarian cancer. Transl. Cancer Res., 2019, Vol. 8, no. 1, pp. 111-119.
155. Yamashita S., Hashimoto K., Sawada I., Ogawa M., Nakatsuka E., Kawano M., Kinose Y., Kodama M., Sawada K., Kimura T. Endometrial galectin-3 causes endometriosis by supporting eutopic endometrial cell survival and engraftment in the peritoneal cavity. Am. J. Reprod. Immunol., 2022, Vol. 87, no. 6, e13533. doi: 10.1111/aji.13533.
156. Yan J., Zhang Y., Zhang J.P., Liang J., Li L., Zheng L. Tim-3 expression defines regulatory T cells in human tumors. PLoS One, 2013, Vol. 8, no. 3, e58006. doi: 10.1371/journal.pone.0058006.
157. Yang M., Yu Q., Liu J., Fu W., Cao Y., Yu L., Shao S., Wang X., Niu H., Wang Y. T-cell immunoglobulin mucin-3 expression in bladder urothelial carcinoma: Clinicopathologic correlations and association with survival. J. Surg. Oncol., 2015, Vol. 112, no. 4, pp. 430-435.
158. Yasinska I.M., Sakhnevych S.S., Pavlova L., Teo Hansen Selno A., Teuscher Abeleira A.M., Benlaouer O., Goncalves Silva I., Mosimann M., Varani L., Bardelli M., Hussain R., Siligardi G., Cholewa D., Berger S.M., Gibbs B.F., Ushkaryov Y.A., Fasler-Kan E., Klenova E., Sumbayev V.V. The Tim-3-Galectin-9 Pathway and Its Regulatory Mechanisms in Human Breast Cancer. Front. Immunol., 2019, Vol. 10, 1594. doi: 10.3389/fimmu.2019.01594.
159. Yildiz C., Caner A., Oksasoglu B., Misir S., Yaylim I., Hepokur C. The role of cytokeratin 19 levels in the determination of endometriosis stages. Gynecol. Endocrinol., 2022, Vol. 38, no. 10, pp. 879-884.
160. Zhang C., Xu L., Ma Y., Huang Y., Zhou L., Le H., Chen Z. Increased TIM-3 expression in tumor-associated macrophages predicts a poorer prognosis in non-small cell lung cancer: a retrospective cohort study. J. Thorac. Dis., 2023, Vol. 15, no. 3, pp. 1433-1444.
161. Zhang Y., Wu L., Wen X., Lv X. Identification and validation of risk score model based on gene set activity as a diagnostic biomarker for endometriosis. Heliyon, 2023, Vol. 9, no. 7, e18277. doi: 10.1016/j.heliyon.2023.e18277.
162. Zhang Y., Yang R., Xu C., Zhang Y., Deng M., Wu D., Tang F., Liu X., Han Y., Zhan Y., Miao J. Analysis of the immune checkpoint lymphocyte activation gene-3 (LAG-3) in endometrial cancer: An emerging target for immunotherapy. Pathol. Res. Pract., 2022, Vol. 236, e153990. doi: 10.1016/j.prp.2022.153990.
163. Zhang Y., Yao Q., Pan Y., Fang X., Xu H., Zhao T., Zhu G., Jiang T., Li S., Cao H. Efficacy and Safety of PD-1/PD-L1 checkpoint inhibitors versus Anti-PD-1/PD-L1 combined with other therapies for tumors: a systematic review. Cancers (Basel), 2023, Vol. 15, no. 3, 682. doi: 10.3390/cancers15030682.
164. Zhang Y., Zhang H., Wei M., Mou T., Shi T., Ma Y., Cai X., Li Y., Dong J., Wei J. Recombinant adenovirus expressing a soluble fusion protein PD-1/CD137L subverts the suppression of CD8(+) T cells in HCC. Mol. Ther., 2019, Vol. 27, no. 11, pp. 1906-1918.
165. Zhang Y., Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv. Exp. Med. Biol., 2020, Vol. 1248, pp. 201-226.
166. Zheng D., Hou X., Yu J., He X. Combinatorial strategies with PD-1/PD-L1 immune checkpoint blockade for breast cancer therapy: mechanisms and clinical outcomes. Front. Pharmacol., 2022, Vol. 13, 928369. doi: 10.3389/fphar.2022.928369.
167. Zheng L., Sun D.F.,Tong Y. Exosomal miR-202 derived from leukorrhea as a potential biomarker for endometriosis. J. Int. Med. Res., 2023, Vol. 51, no. 1, 3000605221147183. doi: 10.1177/03000605221147183.
168. Zhou E., Huang Q., Wang J., Fang C., Yang L., Zhu M., Chen J., Chen L., Dong M. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. Int. J. Clin. Exp. Pathol., 2015, Vol. 8, no. 7, pp. 8018-8027.
169. Zhu C., Anderson A.C., Schubart A., Xiong H., Imitola J., Khoury S.J., Zheng X.X., Strom T.B., Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol., 2005, Vol. 6, no. 12, pp. 1245-1252.
170. Zhu H., Wang M., Du Y., Liu X., Weng X., Li C. 4-1BBL has a possible role in mediating castration-resistant conversion of prostate cancer via up-regulation of androgen receptor. J. Cancer, 2019, Vol. 10, no. 11, pp. 2464-2471.
171. Ziogas I.A., Evangeliou A.P., Giannis D., Hayat M.H., Mylonas K.S., Tohme S., Geller D.A., Elias N., Goyal L., Tsoulfas G. The role of immunotherapy in hepatocellular carcinoma: a systematic review and pooled analysis of 2, 402 patients. Oncologist, 2021, Vol. 26, no. 6, pp. e1036-e1049.
Supplementary files
Review
For citations:
Belevich A.S., Yarmolinskaya M.I., Selkov S.A., Sokolov D.I. Immune сheckpoints in the context of external genital endometriosis. Medical Immunology (Russia). 2025;27(2):245-264. (In Russ.) https://doi.org/10.15789/1563-0625-ICI-2923