Preview

Medical Immunology (Russia)

Advanced search

Delta-Vac’ subunit vaccine induces strong humoral immune response against SARS-CoV-2

https://doi.org/10.15789/1563-0625-DVC-2901

Abstract

The COVID-19 pandemic has focused the worldwide attention on the fight against this infection. Development of preventive vaccines based on different platforms, including DNA and RNA vaccines, genetic vectors and subunit vaccines A has been the key approach to combating COVID-19. The subunit vaccines were among these platforms, primarily, due to their unique safety profile. However, the safety of these vaccines is often associated with low efficiency. Hence, their application often requires usage of immune adjuvants, along with more complex immunization regimens. Meanwhile, an important advantage of subunit vaccines is their scalability and relative ease of production, since there is no need to work with live virus or viral vectors during the production process. The purpose of our work was to develop a candidate vaccine based on the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike S-protein from the Delta variant (B.1.617.2). The study used immunological techniques employing methods of genetic engineering and biotechnology. In the course of this work, we have developed a producer of recombinant RBD based on the CHO-K1 mammalian cells. To obtain a protein meeting the requirements of injectable drugs, a chromatographic purification scheme was developed, including affinity and ion exchange chromatography. We have proposed a variant of the subunit vaccine “Delta-Vac” developed on this recombinant protein. Immunogenicity of “Delta-Vac” vaccine was tested in the BALB/c mice. The animals were immunized twice at a dose of 50 μg of RBD combined with Al(OH)3, at a two-week interval. The ability of the candidate vaccine was assessed by induced production of specific IgG and neutralizing antibodies in BALB/c mice. Specific antibody titers of immunized animals ranged from 1/105 to 1/106 . Moreover, the blood sera showed neutralizing activity against SARS-CoV-2 (variant Delta, B.1.617.2) at a titer of up to 1/2000. The developed vaccine “Delta-Vac” is highly immunogenic and induces production of neutralizing antibodies against homologous Delta variant as well as heterologous Wuhan and Omicron SARS-CoV-2 variants. Hence, “Delta-Vac” may act as a vaccine candidate and serve as a prototype for the development of subunit vaccines against COVID-19.

About the Authors

V. S. Nesmeyanova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Nesmeyanova V.S., Junior Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



Yu. A. Merkulyeva
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Merkulyeva Yu.A., PhD (Biology), Junior Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



A. A. Isaeva
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Isaeva A.A., PhD (Chemistry), Junior Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



N. V. Volkova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Volkova N.V., PhD (Biology), Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



S. V. Belenkaya
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Belenkaya S.V., PhD (Biology), Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



M. B. Borgoyakova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Borgoyakova M.B., Junior Researcher, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



E. A. Volosnikova
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Volosnikova E.A., PhD (Biology), Leading Researcher of the Department of Technology Development and Pilot Production of Biologicals, Head of the Laboratory of Obtaining and Analizing Biosubstances 

Koltsovo, Novosibirsk Region 630559



T. I. Esina
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Esina T.I., Junior Researcher, Department of Technology Development and Pilot Production of Biologicals 

Koltsovo, Novosibirsk Region 630559



E. D. Danilenko
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Danilenko E.D., PhD (Biology), Acting Director, Institute of Medical Biotechnology 

Koltsovo, Novosibirsk Region 630559



A. V. Zaikovskaya
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Zaikovskaya A.V., PhD (Biology), Senior Researcher, Department “Collection of Microorganisms” 

Koltsovo, Novosibirsk Region 630559



S. E. Olkin
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Olkin S.E., Leading Researcher, Department of Biophysics and Ecological Research 

Koltsovo, Novosibirsk Region 630559



O. V. Pyankov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Pyankov O.V., PhD (Biology), Head, Department “Collection of Microorganisms” 

Koltsovo, Novosibirsk Region 630559



A. A. Ilichev
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Ilichev A.A., PhD, MD (Biology), Professor, Head, Bioengineering Department 

Koltsovo, Novosibirsk Region 630559



D. N. Shcherbakov
State Research Center of Virology and Biotechnology “Vector”
Russian Federation

Shcherbakov D.N., PhD (Biology), Leading Researcher of the Bioengineering Department, Head of the Laboratory of Immunochemistry 

Koltsovo, Novosibirsk Region 630559



References

1. Matveev A.L., Khlusevich Ya.A., Baykov I.K., Babkin I.V., Goncharova E.P., Morozova V.V., Tikunova N.V. Development of a stable eukaryotic strain producing fully human monoclonal antibody on the basis of the human antibody against ectromelia virus. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2017, Vol. 21, no. 8, pp. 993-1000. (In Russ.)

2. Arora P., Zhang L., Rocha C., Graichen L., Nehlmeier I., Kempf A., Cossmann A., Gema Morillas Ramos G.M., Baier E., Tampe B., Moerer O., Dickel S., Winkler M.S., Behrens G.M.N., Pöhlmann S., Hoffmann M. The SARS-CoV-2 Delta-Omicron Recombinant Lineage (XD) Exhibits Immune-Escape Properties Similar to the Omicron (BA. 1) Variant. Int. J. Mol. Sci., 2022, Vol. 23, no. 22, 14057. doi: 10.3390/ijms232214057.

3. Coria L.M., Saposnik L.M., Pueblas Castro C., Castro E.F., Bruno L.A., Stone W.B., Pérez P.S., Darriba M.L., Chemes L.B., Alcain J., Mazzitelli I., Varese A., Salvatori M., Auguste A.J., Álvarez D.E., Pasquevich K.A., Cassataro J. A novel bacterial protease inhibitor adjuvant in RBD-Based COVID-19 vaccine formulations containing alum increases neutralizing antibodies, specific germinal center B cells and confers protection against SARS-CoV-2 Infection in Mice. Front. Immunol., 2022, Vol. 13, 844837. doi: 10.3389/fimmu.2022.844837.

4. Dai L., Gao G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 2021, Vol. 21, no. 2, pp. 73-82.

5. Ghaemi A., Roshani P. Asl., Zargaran H., Ahmadi D., Hashimi A.A., Abdolalipour E., Bathaeian S., Miri S.M. Recombinant COVID-19 vaccine based on recombinant RBD/Nucleoprotein and saponin adjuvant induces long-lasting neutralizing antibodies and cellular immunity. Front. Immunol., 2022, Vol. 13, 974364. doi: 10.3389/fimmu.2022.974364.

6. Han X., Cai Z., Dai Y., Huang H., Cao X., Wang Y., Fang Y., Liu G., Zhang M., Zhang Y., Yang B., Xue W., Zhao G., Tai W., Li M., Re-burying Artificially Exposed Surface of Viral Subunit Vaccines Through Oligomerization Enhances Vaccine Efficacy. Front. Cell. Infect. Microbiol., 2022, Vol. 12, 927674. doi: 10.3389/fcimb.2022.927674.

7. Heidary M., Kaviar V.H., Shirani M., Ghanavati R., Motahar M., Sholeh M., Khoshnood S.A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front. Microbiol., 2022, Vol. 13, 927306. doi: 10.3389/fmicb.2022.927306.

8. Karthik K., Senthilkumar T.M.A., Udhayavel S., Raj G.D. Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Hum. Vaccin. Immunother., 2020, Vol. 16, no. 12, pp. 3055-3060.

9. Kleanthous H., Silverman J.M., Makar K.W., Yoon I.K., Jackson N., Vaughn D.W. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. Vaccines, 2021, Vol. 6, no. 1, 128. doi: 10.1038/s41541-021-00393-6.

10. Kuo T.Y., Lin M.Y., Coffman R.L., Campbell J.D., Traquina P., Lin Y.J., Liu L. T.-Ch., Cheng J., Wu Y.-Ch., Wu Ch.-Ch., Tang W.-H., Huang Ch.-G., Tsao K.-Ch., Chen C. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci. Rep., 2020, Vol. 10, no. 1, 20085. doi: 10.1038/s41598-020-77077-z.

11. Lee I.J., Sun C.P., Wu P.Y., Lan Y.H., Wang I.H., Liu W.C., Yuan J.P.-Y., Chang Y.-W., Tseng Sh.-Ch., Tsung S. I., Chou Y.-Ch., Kumari M., Lin Y.-Sh., Chen H.-F., Chen T.-Y., Lin Ch.-Ch., Chiu Ch.-W., Hsieh Ch.-H., Chuang Ch.-Y., Cheng Ch.-M., Lin H.-T., Chen W.-Y., Hsu F.-F., Hong M.-H., Liao Ch.-Ch., Chang Ch.-Sh., Liang J.J., Ma H.-H., Chiang M.-T., Liao H.-N., Ko H.-Y., Chen L.-Y., Ko Y.-A., Yu P.-Y., Yang T.-J., Chiang P.-Ch., Hsu Sh.-T., Lin Y.-L., Lee Ch.-Ch., Wu H.-Ch., Tao M.H. A booster dose of Delta × Omicron hybrid mRNA vaccine produced broadly neutralizing antibody against Omicron and other SARS-CoV-2 variants. J. Biomed. Sci., 2022, Vol. 29, no. 1, 49. doi: 10.1186/s12929-022-00830-1.

12. Liao Y., Li Y., Pei R., Fang X., Zeng P., Fan R., Ou Zh., Deng J., Zhou J., Guan W., Min Y., Deng F., Peng H., Zhang Zh., Feng Ch., Xin B., He J., Hu Zh., Zhang J. Safety and immunogenicity of a recombinant interferonarmed RBD dimer vaccine (V-01) for COVID-19 in healthy adults: a randomized, double-blind, placebo-controlled, Phase I trial. Emerg. Microbes Infect., 2021, Vol. 10, no. 1, pp. 1589-1597.

13. Lin T.W., Huang P.H., Liao B.H., Chao T.L., Tsai Y.M., Chang S.C., Chang S.-Y., Chen H.W. Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response. Vaccines, 2022, Vol. 10, no. 11, 1839. doi: 10.3390/vaccines10111839.

14. Liu Ch., Ginn H.M., Dejnirattisai W., Supasa P., Wang B., Tuekprakhon A., Nutalai R., Zhou D., Mentzer A.J., Zhao Y., Duyvesteyn H.M.E., López-Camacho C., Slon-Campos J., Walter Th.S., Skelly D., Johnson S.A., Ritter Th.G., Mason Ch., Clemens S.A.C., Naveca F.G., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P.C., Pauvolid-Correa A., Siqueira M.M., Dold Ch., Temperton N., Dong T., Pollard A.J., Knight J.C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S.C., Malik T., Carroll M.W., Klenerman P., Barnes E., Dunachie S.J., Baillie V., Serafin N., Ditse Z., Silva K.D., Paterson N.G., Williams M.A., Hall D.R., Madhi Sh., Nunes M.C., Goulder Ph., Fry E.E., Mongkolsapaya J., Ren J., Stuart D.I., Screaton G.R. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell, 2021, Vol. 184, no. 16, pp. 4220-4236.e13.

15. Malladi S.K., Singh R., Pandey S., Gayathri S., Kanjo K., Ahmed S., Khan M.S., Kalita P., Girish N., Upadhyaya A., Reddy P., Pramanick I., Bhasin M., Mani Sh., Bhattacharyya S., Joseph J., Thankamani K., Raj V.S., Dutta S., Singh R., Nadig G., Varadarajan R. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. J. Biol. Chem., 2021, Vol. 296, 100025. doi: 10.1074/jbc.RA120.016284.

16. Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Isaeva A.A., Nesmeyanova V.S., Volkova N.V., Aripov V.S., Shanshin D.V., Karpenko L.I., Belenkaya S.V., Kazachinskaia E.I., Volosnikova E.A., Esina T.I., Sergeev A.A., Titova K.A., Konyakhina Y.V., Zaykovskaya A.V., Pyankov O.V., Kolosova E.A., Viktorina O.E., Shelemba A.A., Rudometov A.P., Ilyichev A.A. Are Hamsters a Suitable Model for Evaluating the Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? Viruses, 2022, Vol. 14, no. 5, 1060. doi: 10.3390/v14051060.

17. Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Shanshin D.V., Rudometov A.P., Karpenko L.I., Belenkaya S.V., Isaeva A.A., Nesmeyanova V.S., Kazachinskaia E.I., Volosnikova E.A., Esina T.I., Zaykovskaya A.V., Pyankov O.V., Borisevich S.S., Shelemba A.A., Chikaev A.N., Ilyichev A.A. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines, 2022, Vol. 10, no. 1, 96. doi: 10.3390/vaccines10010096.

18. Pang Y., Lu H., Cao D., Zhu X., Long Q., Tian F., Long X., Li Y. Efficacy, immunogenicity and safety of respiratory syncytial virus prefusion F vaccine: systematic review and meta-analysis. BMC Public Health, 2024, Vol. 24, no. 1, 1244. doi: 10.1186/s12889-024-18748-8.

19. Premkumar L., Segovia-Chumbez B., Jadi R., Martinez D.R., Raut R., Markmann A.J., Cornaby C., Bartelt L., Weiss S., Park Y., Edwards C.E., Weimer E., Scherer E.M., Rouphael N., Edupugantih S., Weiskopf D., Tse L.V., Hou Y.J., Margolis D., Sette A., Collins M.H., Schmitz J., Baric R.S., de Silva A.M. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science immunology, 2020, Vol. 5, no. 48, eabc8413. doi: 10.1126/sciimmunol.abc8413.

20. Shimizu J., Sasaki T., Koketsu R., Morita R., Yoshimura Y., Murakami A., Saito Y., Kusunoki T., Samune Y., Nakayama E.E., Miyazaki K., Shioda T. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci. Rep., 2022, Vol. 12, no. 1, 15612. doi: 10.1038/s41598-022-19993-w.

21. Starr T.N., Czudnochowski N., Liu Z., Zatta F., Park Y.J., Addetia A., Pinto D., Beltramello M., Hernandez P., Greaney A.J., Marzi R., Glass W.G., Zhang I., Dingens A.S., Bowen J.E., Tortorici M.A., Walls A.C., Wojcechowskyj J.A., de Marco A., Rosen L.E., Zhou J., Montiel-Ruiz M., Kaiser H., Dillen J.R., Tucker H., Bassi J., Silacci-Fregni Ch., Housley M.P., Di Iulio J., Lombardo G., Agostini M., Sprugasci N., Culap K., Jaconi S., Meury M., Jr E.D., Abdelnabi R., Foo Sh.-Y.C., Cameroni E., Stumpf S., Croll T.I., Nix J.C., Havenar-Daughton C., Piccoli L., Benigni F., Neyts J., Telenti A., Lempp F.A., Pizzuto M.S., Chodera J.D., Hebner Ch.M., Virgin H.W., Whelan S.P.J., Veesler D., Corti D., Bloom J.D., Snell G. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, Vol. 597, no. 7874, pp. 97-102.

22. Wang J., Wen Y., Zhou S.H., Zhang H.W., Peng X.Q., Zhang R.Y., Yin X-G., Qiu H., Gong R., Yang G.F., Guo J. Self-Adjuvanting Lipoprotein Conjugate αgalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. J. Med. Chem., 2022, Vol. 65 no. 3, pp. 2558-2570.

23. Yang D.K., Kweon C.H., Kim B.H., Lim S.I., Kwon J.H., Kim S.H., Jae-Young S., Han H.R. Immunogenicity of baculovirus expressed recombinant proteins of Japanese encephalitis virus in mice. J. Vet. Sci., 2005, Vol. 6, no. 2, pp. 125-133.

24. Yang J., Wang W., Chen Z., Lu S., Yang F., Bi Z., Bao L., Mo F., Li X., Huang Y., Hong W., Yang Y., Zhao Y., Ye F., Lin Sh., Deng W., Chen H., Lei H., Zhang Z., Luo M., Gao H., Zheng Y., Gong Y., Jiang X., Xu Y., Lv Q., Li D., Wang M., Li F., Wang Sh., Wang G., Yu P., Qu Y., Yang L., Deng H., Tong A., Li J., Wang Zh., Yang J., Shen G., Zhao Zh., Li Y., Luo J., Liu H., Yu W., Yang M., Xu J., Wang J., Li H., Wang H., Kuang D., Lin P., Hu Zh., Guo W., Cheng W., He Y., Song X., Chen Ch., Xue Zh., Yao Sh., Chen L., Ma X., Chen S., Gou M., Huang W., Wang Y., Fan Ch., Tian Zh., Shi M., Wang F.-Sh., Dai L., Wu M., Li G., Wang G., Peng Y., Qian Zh., Huang C., Lau J. Y.-N., Yang Zh., Wei Y., Cen X., Peng X., Qin Ch., Zhang K., Lu G., Wei X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, Vol. 586, no. 7830, pp. 572-577.

25. Ye J., Meng S., Zhu X. Recent advances in the development of bispecific antibodies. Sheng Wu Gong Cheng Xue Bao, 2020, Vol. 36, no. 1, pp. 33-43.

26. Zang J., Gu C., Zhou B., Zhang C., Yang Y., Xu S., Bai L., Zhang R., Deng Q., Yuan Zh., Tang H., Qu D., Lavillette D., Xie Y., Huang Z. Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discov., 2020, Vol. 6, 61. doi: 10.1038/s41421-020-00199-1.

27. Zhang J., Han Z.B., Liang Y., Zhang X.F., Jin Y.Q., Du L.F., Shao Sh., Wang H., Hou J.W., Xu K., Lei W., Lei Z.H., Liu Zh.M., Zhang J., Hou Y.N., Liu N., Shen F.J., Wu J.J., Zheng X., Li X.Y., Li X., Huang W.J., Wu G.Zh., Su J.G., Li Q.M. A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. Elife, 2022, Vol. 11, e78633. doi: 10.7554/eLife.78633.

28. Zhang J., Zeng H., Gu J., Li H., Zheng L., Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 2020, Vol. 8, no. 2, 153. doi: 10.3390/vaccines8020153.


Supplementary files

Review

For citations:


Nesmeyanova V.S., Merkulyeva Yu.A., Isaeva A.A., Volkova N.V., Belenkaya S.V., Borgoyakova M.B., Volosnikova E.A., Esina T.I., Danilenko E.D., Zaikovskaya A.V., Olkin S.E., Pyankov O.V., Ilichev A.A., Shcherbakov D.N. Delta-Vac’ subunit vaccine induces strong humoral immune response against SARS-CoV-2. Medical Immunology (Russia). 2025;27(5):1077-1086. (In Russ.) https://doi.org/10.15789/1563-0625-DVC-2901

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)