Preview

Медицинская иммунология

Расширенный поиск

Лиганды и носители для улучшения иммунной активности: механизмы действия и перспективы применения в медицине и биотехнологии

https://doi.org/10.15789/1563-0625-LAC-2894

Аннотация

Статья посвящена обзору исследований, посвященных роли антител, цитокинов, белков комплемента, молекул основного комплекса гистосовместимости (MHC) и Toll-подобных рецепторов (TLRs) в иммунном ответе, а также их потенциала как мишеней для иммунотерапии. В настоящем обзоре рассматривается влияние различных носителей на иммунную активность белков, с особым акцентом на роли носителей в разработке методов лечения заболеваний, включая онкологические, аутоиммунные и инфекционные. Результаты исследований подчеркивают важность понимания молекулярных механизмов иммунного ответа и роли различных компонентов иммунной системы.
Антитела, как ключевые компоненты адаптивного иммунитета, играют важную роль в нейтрализации патогенов и могут быть использованы в качестве целей для иммунотерапии. Цитокины и белки комплемента выполняют множество функций, включая активацию иммунных клеток, противовирусную активность и регуляцию воспалительных процессов. MHC-молекулы осуществляют презентацию антигенов и активацию адаптивного иммунитета. TLRs, в свою очередь, распознают патогенассоциированные молекулярные паттерны и инициируют иммунный ответ. Исследования также показали потенциал использования носителей на основе липидов, белков, углеводов и нуклеиновых кислот для усиления иммунной активности белков.
В обзоре обсуждается использование носителей для улучшения иммунной активности белков, что может быть полезно для создания новых вакцин и других терапевтических препаратов. В последние годы наблюдается растущий интерес к разработке методов лечения на основе белковых молекул, включая моноклональные антитела, цитокины и другие. Данные методы перспективны для лечения целого ряда заболеваний, но на их эффективность влияет выбор молекулы-носителя. Конъюгация белков с другими молекулами, например, наночастицами или липосомами, может повысить стабильность, специфичность и эффективность. Присутствие носителей на поверхности опухолевых клеток способно стимулировать противоопухолевый иммунный ответ. Однако все еще существуют проблемы, требующие решения при разработке методов лечения на основе носителей. Одной из них является потенциальная иммуногенность, индуцируемая носителем, которая может вызвать нежелательный иммунный ответ и ограничить эффективность терапии. Кроме того, сложный выбор подходящего белка-носителя для конкретного терапевтического применения требует дальнейших исследований механизмов, лежащих в основе функции белка-носителя и активации иммунитета.
Авторами проведен анализ научной литературы, в результате чего установлено, что использование носителей и лигандов представляет собой перспективный подход для улучшения иммунной активности белков и разработки новых стратегий вакцинации и иммунотерапии.

Об авторах

С. С. Гогина
ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»; АО БТК «Биосервис»; ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова»
Россия

Гогина С.С. – магистр института биохимической технологии и нанотехнологии; специалист; младший научный сотрудник 

Москва



А. М. Стойнова
ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы»
Россия

Стойнова А.М. – к.х.н., ассистент института биохимической технологии и нанотехнологии 

Москва



Список литературы

1. Козлов В.А., Борисов А.Г., Смирнова С.В., Савченко А.А. Практические аспекты диагностики и лечения иммунных нарушений: руководство для врачей. Новосибирск: Наука, 2009. С. 208-209.

2. Титов Л.П. Иммунология: Терминологический словарь. М.: Медицинское информационное агентство, 2008. 512 с.

3. Al Naqbi H., Mawart A., Alshamsi J., Al Safar H., Tay G.K. Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula. Immunogenetics, 2021, Vol. 73, no.2, pp. 131–152. https://doi.org/10.1007/s00251-021-01204-x

4. Almagro J.C., Daniels-Wells T.R., Perez-Tapia S.M. and Penichet M.L. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Frontiers in immunology, 2018, Vol. 8, 1751. https://doi.org/10.3389/fimmu.2017.01751

5. Anand S.P., Ding S., Tolbert W.D., Prévost J., Richard J., Gil H.M., Gendron-Lepage G., Cheung W.F., Wang H., Pastora R., Saxena H., Wakarchuk W., Medjahed H., Wines B.D., Hogarth M., Shaw G.M., Martin M.A., Burton D.R., Hangartner L., Evans D.T., … Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. Journal of virology, 2021, Vol. 95, no.18, e0079621. https://doi.org/10.1128/jvi.00796-21

6. Anzaghe M., Schülke S. and Scheurer S. Virus-Like Particles as Carrier Systems to Enhance Immunomodulation in Allergen Immunotherapy. Current allergy and asthma reports, 2018, Vol. 18, pp. 1–12. https://doi.org/10.1007/s11882-018-0827-1

7. Aricò E., Castiello L., Capone I., Gabriele L., Belardelli F. Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers, 2019, Vol. 11, no. 12, 1943. https://doi.org/10.3390/cancers11121943

8. Austin R.J., Straube J., Bruedigam C., Pali G., Jacquelin S., Vu T., Green J., Gräsel J., Lansink L., Cooper L., Lee, S.J., Chen N.T., Lee C.W., Haque A., Heidel F.H., D'Andrea R., Hill G.R., Mullally A., Milsom, M.D., Bywater M., … Lane S.W. Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia, 2020, Vol. 34, no. 4, pp. 1075–1089. https://doi.org/10.1038/s41375-019-0638-y

9. Bargh J.D., Isidro-Llobet A., Parker J.S. and Spring D.R. Cleavable linkers in antibody-drug conjugates. Chemical Society reviews, 2019, Vol. 48, no.16, pp. 4361–4374. https://doi.org/10.1039/c8cs00676h

10. Bossard M.J. and Vicent M.J. PEGylated proteins: A rational design for mitigating clearance mechanisms and altering biodistribution. Polymer-Protein Conjugates, 2020, pp. 23–40. https://doi.org/10.1016/b978-0-444-64081-9.00002-4

11. Cai X., Han Y., Gu M., Song M., Wu X., Li Z., Li F., Goulette T., Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food & function, 2019, Vol. 10, no. 10, pp. 6331–6341. https://doi.org/10.1039/c9fo01537j

12. Chahine E.B., Guirguis E.H. and Derrick C.B. Management of Hepatitis C in the Older Adult. The Senior care pharmacist, 2020, Vol. 35, no.1, pp. 13–28. http://dx.doi.org/10.4140/TCP.n.2020.13

13. Chau C.H., Steeg P.S. and Figg W.D. Antibody-drug conjugates for cancer. Lancet, 2019, Vol. 394, no.10200, pp. 793–804. https://doi.org/10.1016/s0140-6736(19)31774-x

14. Dean A.Q, Luo S., Twomey J.D. and Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. mAbs, 2021, Vol. 13, no.1, 1951427. https://doi.org/10.1080/19420862.2021.1951427

15. Demel I., Bago J.R., Hajek R., Jelinek, T. Focus on monoclonal antibodies targeting B-cell maturation antigen (BCMA) in multiple myeloma: update 2021. British journal of haematology, 2021, Vol. 193, no.4, pp. 705–722. https://doi.org/10.1111/bjh.17235

16. Fan S., Li W., Zhang K., Zou X., Shi W., Liu Z., Tang C., Huang W., Tang F. Enhanced antibody-defucosylation capability of α-L-fucosidase by proximity-based protein fusion. Biochemical and biophysical research communications, 2023, Vol. 645, pp. 40–46. https://doi.org/10.1016/j.bbrc.2023.01.031

17. Francis J.E., Skakic I., Dekiwadia C., Shukla R., Taki A.C., Walduck A., Smooker P.M. Solid Lipid Nanoparticle Carrier Platform Containing Synthetic TLR4 Agonist Mediates Non-Viral DNA Vaccine Delivery. Vaccines, 2020, Vol. 8, no.3, 551. https://doi.org/10.3390/vaccines8030551

18. Gao T., Zhu L., Liu H., Zhang X., Wang T., Fu Y., Li H., Dong Q., Hu Y., Zhang Z., Jin J., Liu Z., Yang W., Liu Y., Jin Y., Li K., Xiao Y., Liu J., Zhao H., Liu Y., … Cao C. Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation. Signal transduction and targeted therapy, 2022, Vol. 7, no.1, 318. https://doi.org/10.1038/s41392-022-01133-5

19. Gogesch P., Dudek S., van Zandbergen G, Waibler Z., Anzaghe M. The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. International Journal of Molecular Sciences, 2021, Vol. 22, no.16, 8947. https://doi.org/10.3390/ijms22168947

20. Gong T., Liu L., Jiang W. and Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nature reviews. Immunology, 2020, Vol. 20, no.2, pp. 95–12. https://doi.org/10.1038/s41577-019-0215-7

21. Hao S., Jin D., Zhang S. and Qing R. QTY Code-designed Water-soluble Fc-fusion Cytokine Receptors Bind to their Respective Ligands. QRB discovery, 2020, Vol. 1. https://doi.org/10.1017/qrd.2020.4

22. He Q., Jiang X., Zhou X. and Weng J. Targeting cancers through TCR-peptide/MHC interactions. Journal of hematology & oncology, 2019, Vol. 12. no.1, pp. 1–17. https://doi.org/10.1186/s13045-019-0812-8

23. Hong S., Choi D.W., Kim H.N., Park C.G., Lee W., Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 2020, Vol. 12, no.7, 604. https://doi.org/10.3390/pharmaceutics12070604

24. Huang Q., Wu X., Zheng X., Luo S., Xu S., Weng, J. Targeting inflammation and cytokine storm in COVID-19. Pharmacological research, 2020, Vol. 159, 105051. https://doi.org/10.1016/j.phrs.2020.105051

25. Hurt A.C. and Wheatley A.K. Neutralizing Antibody Therapeutics for COVID-19. Viruses, 2021, Vol. 13, no.4, 628. https://doi.org/10.3390/v13040628

26. Im J.H., Yeo I.J., Hwang C.J., Lee K.S., Hong, J.T. PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation. Biomolecules & therapeutics, 2020, Vol. 28, no.2, pp. 152–162. https://doi.org/10.4062/biomolther.2019.147

27. Indolfi G. and Nicastro E. Hepatitis during childhood. Comprehensive Guide to Hepatitis Advances, Academic Press, 2023, pp. 603–628. https://doi.org/10.1016/B978-0-323-98368-6.00031-8

28. Iqbal H., Yang T., Li T., Zhang M., Ke H., Ding D., Deng Y., Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. Journal of controlled release, 2021, Vol. 329, pp. 997–1022. https://doi.org/10.1016/j.jconrel.2020.10.030

29. Jeong S.H., Jang J.H., Cho H.Y. and Lee Y.B. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Archives of pharmacal research, 2018, Vol. 41, pp. 797–814. https://doi.org/10.1007/s12272-018-1060-0

30. Jiang S., Zhang X., Yang Y., Hotez, P.J., Du, L. Neutralizing antibodies for the treatment of COVID-19. Nature biomedical engineering, 2020, Vol. 4, no.12, pp.1134–1139. https://doi.org/10.1038/s41551-020-00660-2

31. Jiang Z., Zhao M., Zhang H., Li Y., Liu M., Feng F. Antimicrobial Emulsifier-Glycerol Monolaurate Induces Metabolic Syndrome, Gut Microbiota Dysbiosis, and Systemic Low-Grade Inflammation in Low-Fat Diet Fed Mice. Molecular nutrition & food research, 2018, Vol. 62, no.3, 1700547. 10.1002/mnfr.201700547. https://doi.org/10.1002/mnfr.201700547

32. Joubert N., Beck A., Dumontet C. and Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals, 2020, Vol. 13, no. 9, 245. https://doi.org/10.3390/ph13090245

33. Kang Y., Yang G., Zhang S., Ross C.F., Zhu M.J. Goji Berry Modulates Gut Microbiota and Alleviates Colitis in IL-10-Deficient Mice. Molecular nutrition & food research, 2018, Vol. 62, no. 22, 1800535. https://doi.org/10.1002/mnfr.201800535

34. Kouli A., Horne C.B. and Williams-Gray C.H. Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain, behavior, and immunity, 2019, Vol. 81, no. 41–51. https://doi.org/10.1016/j.bbi.2019.06.042

35. Kulasekararaj A.G. and Lazana I. Paroxysmal nocturnal hemoglobinuria: Where are we going. American journal of hematology, 2023, Vol. 98, S33–S43. https://doi.org/10.1002/ajh.26882

36. Kumar S., Sunagar R. and Gosselin E. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants. Frontiers in immunology, 2019, Vol. 10, 1144. https://doi.org/10.3389/fimmu.2019.01144

37. Labrijn A.F., Janmaat M.L., Reichert J.M. and Parren P.W.H.I. Bispecific antibodies: a mechanistic review of the pipeline. Nature reviews. Drug discovery, 2019, Vol. 18, no.8, pp. 585–608. https://doi.org/10.1038/s41573-019-0028-1

38. Lewczuk N., Zdebik A. and Bogusławska J. Interferon Alpha 2a and 2b in Ophthalmology: A Review. Journal of interferon & cytokine research, 2019, Vol. 39, no.5, pp. 259–272. https://doi.org/10.1089/jir.2018.0125

39. Liu R., Oldham R.J., Teal E., Beers S.A., Cragg M.S. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies, 2020, Vol. 9, no.4, 64. https://doi.org/10.3390/antib9040064

40. Locatelli F., Zugmaier G., Rizzari C., Morris J. D., Gruhn B., Klingebiel T., Parasole R., Linderkamp C., Flotho C., Petit A., Micalizzi C., Mergen N., Mohammad A., Kormany W. N., Eckert C., Möricke A., Sartor M., Hrusak O., Peters, C., Saha V., … von Stackelberg A. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children With High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA, 2021, Vol. 325, no.9, pp. 843–854. https://doi.org/10.1001/jama.2021.0987

41. Mandikian D., Takahashi N., Lo A.A., Li J., Eastham-Anderson J., Slaga D., Ho J., Hristopoulos M., Clark R., Totpal K., Lin K., Joseph S.B., Dennis M.S., Prabhu S., Junttila T.T., Boswell C. A. Relative Target Affinities of T-Cell-Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model. Molecular cancer therapeutics, 2018, Vol. 17, no.4, pp. 776–785. https://doi.org/10.1158/1535-7163.mct-17-0657

42. Mandó P., Rivero S.G., Rizzo M.M., Pinkasz M., Levy E.M. Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. The Breast, 2021, Vol. 60, pp. 15–25. https://doi.org/10.1016/j.breast.2021.08.007

43. Margolis D.M., Koup R.A. and Ferrari G. HIV antibodies for treatment of HIV infection. Immunological reviews, 2017, Vol. 275, no.1, pp. 313–323. https://doi.org/10.1111/imr.12506

44. Marovich M., Mascola J.R. and Cohen M.S. Monoclonal Antibodies for Prevention and Treatment of COVID-19. JAMA, 2020, Vol. 324, no.2, pp. 131–132. https://doi.org/10.1001/jama.2020.10245

45. Mellado-Sánchez G., Lázaro-Rodríguez J.J., Avila S., Vallejo-Castillo L., Vázquez-Leyva S., Carballo-Uicab G., Velasco-Velázquez M., Medina-Rivero E., Pavón L., Chacón-Salinas R., Pérez-Tapia S.M. Development of Functional Antibodies Directed to Human Dialyzable Leukocyte Extract (Transferon®). Journal of immunology research, 2019, 2754920. https://doi.org/10.1155/2019/2754920

46. Moekotte A.L., Huson M.A.M., Van der Ende A.J., Agnandji S.T., Huizenga E., Goorhuis A., Grobusch M.P. Monoclonal antibodies for the treatment of Ebola virus disease. Expert opinion on investigational drugs, 2016, Vol. 25, no.11, pp. 1325–1335. https://doi.org/10.1080/13543784.2016.1240785

47. Mullard A. 2020 FDA drug approvals. Nature Reviews Drug Discovery, 2021, Vol. 20, no.2, pp. 85–91. https://doi.org/10.1038/d41573-021-00002-0

48. Mullard A. First antibody against COVID-19 spike protein enters phase I. Nature Reviews Drug Discovery, 2020, Vol. 19, no.7, pp. 435–436. https://doi.org/10.1038/d41573-020-00108-x

49. Nakamura T., Shirouzu T., Nakata K., Yoshimura N., Ushigome H. The Role of Major Histocompatibility Complex in Organ Transplantation- Donor Specific Anti-Major Histocompatibility Complex Antibodies Analysis Goes to the Next Stage. International journal of molecular sciences, 2019, Vol. 20, no.18, 4544. https://doi.org/10.3390/ijms20184544

50. Njonkou R., Jackson C.M., Woodworth G.F. and Hersh D.S. Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer immunology, immunotherapy, 2022, Vol. 71, no. 8, pp. 1813–1822. https://doi.org/10.1007/s00262-021-03131-y

51. Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade, A., Easton A.J., Ahmadian G. Katalani C., Hajizade A., Easton A.J., Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of nanobiotechnology, 2021, Vol. 19, no. 1, pp. 1–27. https://doi.org/10.1186/s12951-021-00806-7

52. Nussbaumer O. and Koslowski M. The emerging role of γδ T cells in cancer immunotherapy. Immuno-Oncology Technology, 2019, Vol. 1, pp. 3–10. https://doi.org/10.1016/j.iotech.2019.06.002

53. Parab S. and Doshi G. An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. International immunopharmacology, 2022, Vol. 113, 109341. https://doi.org/10.1016/j.intimp.2022.109341

54. Perciani C.T., Liu L.Y., Wood L. and MacParland S.A. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS nano, 2021, Vol. 15, no. 1, pp. 7–20. https://doi.org/10.1021/acsnano.0c08913

55. Perico L., Benigni A., Casiraghi F., Ng L.F.P., Renia L., Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature reviews. Nephrology, 2021, Vol. 17, no.1, pp. 46–64. https://doi.org/10.1038/s41581-020-00357-4

56. Popat R., Warcel D., O’Nions J., Cowley A., Smith S., Tucker W.R., Yong K., Esposti S.D. Characterization of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: a case series from the first-time-in-human clinical trial. Haematologica, 2020, Vol. 105, no.5, e261–e263. https://doi.org/10.3324/haematol.2019.235937

57. Roshanravan N., Seif F., Ostadrahimi A., Pouraghaei M., Ghaffari S. Targeting Cytokine Storm to Manage Patients with COVID-19: A Mini-Review. Archives of medical research, 2020, Vol. 51, no.7, pp. 608–612. https://doi.org/10.1016/j.arcmed.2020.06.012

58. Saferding V. and Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. Journal of autoimmunity, 2020, Vol. 110, 102382. https://doi.org/10.1016/j.jaut.2019.102382

59. Saleh J., Al-Maqbali M. and Abdel‐Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Comprehensive Physiology, 2019, Vol. 9, no. 4, pp. 1411–1429. https://doi.org/10.1002/cphy.c170037

60. Scaria P.V., Rowe C.G., Chen B.B., Muratova O.V., Fischer E.R., Barnafo E.K., Anderson C.F., Zaidi I.U., Lambert, L.E., Lucas B.J., Nahas D.D., Narum D.L., Duffy P.E. Outer membrane protein complex as a carrier for malaria transmission blocking antigen Pfs230. NPJ vaccines, 2019, Vol. 4, no.1, 24. https://doi.org/10.1038/s41541-019-0121-9

61. Schijns V., Fernández-Tejada A., Barjaktarović Ž., Bouzalas I., Brimnes J., Chernysh S., Gizurarson S., Gursel I., Jakopin Ž., Lawrenz M., Nativi C., Paul S., Pedersen G. K., Rosano C., Ruiz-de-Angulo A., Slütter B., Thakur A., Christensen D., Lavelle, E. C. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunological reviews, 2020, Vol. 296, no.1, pp. 169–190. https://doi.org/10.1111/imr.12889

62. Sedykh S.E., Prinz V.V., Buneva V.N. and Nevinsky G.A. Bispecific antibodies: design, therapy, perspectives. Drug design, development and therapy, 2018, Vol. 12, pp. 195–208. https://doi.org/10.2147/dddt.s151282

63. Shah A., Coyle T., Lalezari S., Fischer K., Kohlstaedde B., Delesen H., Radke S., Michaels L.A. BAY 94-9027, a PEGylated recombinant factor VIII, exhibits a prolonged half-life and higher area under the curve in patients with severe haemophilia A: Comprehensive pharmacokinetic assessment from clinical studies. Haemophilia, 2018, Vol. 24, no.5, pp. 733–740. https://doi.org/10.1111/hae.13561

64. Shi D., Beasock D., Fessler A., Szebeni J., Ljubimova J.Y., Afonin K.A., Dobrovolskaia M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Advanced drug delivery reviews, 2022, Vol. 180, 114079. https://doi.org/10.1016/j.addr.2021.114079

65. Shi W., Yao X., Fu Y. and Wang Y. Interferon‑α and its effects on cancer cell apoptosis (Review). Oncology Letters, 2022, Vol. 24, no.1, pp. 1–9. http://dx.doi.org/10.3892/ol.2022.13355

66. Shim K., Begum R., Yang C. and Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World journal of diabetes, 2020, Vol. 11, no.1, pp. 1–12. https://doi.org/10.4239/wjd.v11.i1.1

67. Sicca F., Neppelenbroek S. and Huckriede A. Effector mechanisms of influenza-specific antibodies: neutralization and beyond. Expert review of vaccines, 2018, Vol. 17, no. 9, pp. 785–795. https://doi.org/10.1080/14760584.2018.1516553

68. Siemieniuk, Reed A.C., Bartoszko, J.J., Martinez J.P.D., Kum E., Qasim A., Zeraatkar D., Izcovich A., Mangala S., Ge L., Han M.A., Agoritsas T., Arnold D., Ávila C., Chu D.K., Couban R., Cusano E., Darzi A.J., Devji T., Foroutan F., Ghadimi M., … Brignardello-Petersen R. Antibody and Cellular Therapies for Treatment of Covid-19 : A Living Systematic Review and Network Meta-Analysis. BMJ, 2021, Vol. 374, 2231. https://doi.org/10.1136/bmj.n2231

69. Sinha P., Matthay M.A. and Calfee C.S. Is a "Cytokine Storm" Relevant to COVID-19?. JAMA internal medicine. 2020, Vol. 180, no.9, pp. 152–1154. https://doi.org/10.1001/jamainternmed.2020.3313

70. Strohl W.R. Current progress in innovative engineered antibodies. Protein & cell, 2018, Vol. 9, no.1, pp. 86–120. https://doi.org/10.1007/s13238-017-0457-8

71. Sun X., Ling Z., Yang Z. and Sun B. Broad neutralizing antibody-based strategies to tackle influenza. Current opinion in virology, 2022, Vol. 53, 101207. https://doi.org/10.1016/j.coviro.2022.101207

72. Sun X., Liu C., Lu X., Ling Z., Yi C., Zhang Z., Li Z., Jin M., Wang W., Tang S., Wang F., Wang F., Wangmo S., Chen S., Li L., Ma L., Zhang Y., Yang Z., Dong X., Qian Z., … Sun B. Unique binding pattern for a lineage of human antibodies with broad reactivity against influenza A virus. Nature communications, 2022, Vol. 13, no.1, 2378. https://doi.org/10.1038/s41467-022-29950-w

73. Thakral S., Sonje J., Munjal B. and Suryanarayanan R., Suryanarayanan R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Advanced drug delivery reviews, 2021, Vol. 173, pp. 1–19. https://doi.org/10.1016/j.addr.2021.03.003

74. van der Horst H.J., Nijhof I.S., Mutis T. and Chamuleau M.E. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers, 2020, Vol. 12, no.10, 3041. https://doi.org/10.3390/cancers12103041

75. Wang X., Mathieu M. and Brezski R.J. IgG Fc engineering to modulate antibody effector functions. Protein & cell, 2018, Vol. 9, no.1, pp. 63–73. https://doi.org/10.1007/s13238-017-0473-8

76. Wang Y., Xie Q., Zhang Y., Ma W., Ning K., Xiang J. Y., Cui J., Xiang H. Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function. Applied microbiology and biotechnology, 2020, Vol. 104, no.1, pp. 335–349. https://doi.org/10.1007/s00253-019-10259-6

77. Wu J. and Sun X. Complement system and age-related macular degeneration: drugs and challenges. Drug design, development and therapy, 2019, Vol. 13, pp. 2413–2425. https://doi.org/10.2147/dddt.s206355

78. Xue D., Hsu E., Fu Y.X. and Peng H. Next-generation cytokines for cancer immunotherapy. Antibody therapeutics, 2021, Vol. 4, no. 2, pp. 123–133. https://doi.org/10.1093/abt/tbab014

79. Zeng X., Wang H., Huang C., Logue C.M., Barbieri N.L., Nolan L. K., Lin J. Evaluation of the Immunogenic Response of a Novel Enterobactin Conjugate Vaccine in Chickens for the Production of Enterobactin-Specific Egg Yolk Antibodies. Frontiers in immunology, 2021, Vol. 12, 629480. https://doi.org/10.3389/fimmu.2021.629480

80. Zhang Y., Qian L., Chen K., Gu S., Wang J., Meng Z., Li Y., Wang P. Intraperitoneal oncolytic virotherapy for patients with malignant ascites: Characterization of clinical efficacy and antitumor immune response. Molecular therapy oncolytics, 2022, Vol. 25, pp. 31–42. https://doi.org/10.1016/j.omto.2022.03.003

81. Zhao H., Wu L., Yan G., Chen Y., Zhou M., Wu Y., Li, Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 2021, Vol. 6, no.1, 263. https://doi.org/10.1038/s41392-021-00658-5

82. Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. International journal of antimicrobial agents, 2020, Vol. 55, no. 6, 105982. https://doi.org/10.1016/j.ijantimicag.2020.105982


Дополнительные файлы

Рецензия

Для цитирования:


Гогина С.С., Стойнова А.М. Лиганды и носители для улучшения иммунной активности: механизмы действия и перспективы применения в медицине и биотехнологии. Медицинская иммунология. 2024;26(6):1149-1162. https://doi.org/10.15789/1563-0625-LAC-2894

For citation:


Gogina S.S., Stoinova A.M. Ligands and carriers for enhancing immune activity: Mechanisms of action and prospects for applications in medicine and biotechnology. Medical Immunology (Russia). 2024;26(6):1149-1162. (In Russ.) https://doi.org/10.15789/1563-0625-LAC-2894

Просмотров: 767


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)