Preview

Medical Immunology (Russia)

Advanced search

Effect of the Rubicon protein on LC3-associated phagocytosis by monocytes in the patients with severe atopic bronchial asthma

https://doi.org/10.15789/1563-0625-EOT-2868

Abstract

Atopic bronchial asthma is the most common and severe allergic disease among a wide range of similar diseases. The main pathogenesis of this disease is characterized by a disturbance of T lymphocyte homeostasis, which significantly worsens the general state of health. In atopic bronchial asthma, there is impaired process of T cell apoptosis. This entails dysregulation and maintenance of peripheral lymphocyte homeostasis. Normally, T cells must undergo apoptosis, and its products should be utilized by neighboring cells, or professional phagocytes: monocytes, macrophages, or dendritic cells. This process is altered in atopic bronchial asthma. The immune system disorders, such as autoimmunity, often result from dysregulation of lymphocyte apoptosis. This is especially true in cases of insufficient or missed clearance of apoptotic bodies.
Recently, the research and medical communities pay much attention to efferocytosis, a form of phagocytosi which proceeds by removal of apoptotic cells by phagocytes by means of LC3-associated phagocytosis (LAP). This process initiates uptake of the particles due to interactions between the phagocyte plasma membrane receptors and apoptotic cell. Further on, a single-membrane phagosome is formed in the cell with the participation of certain autophagy proteins (Beclin-1, VPS34, UVRAG, ATG5, ATG12, ATG7, ATG4, ATG4, LC3). The phagosome is enriched with LC3 protein molecules and fused with lysosomes, in which the captured “cargo” is then lysed. As a part of our work, a detailed analysis of some key protein contents at the LAP pathway was carried out for peripheral blood monocytes of patients with severe bronchial asthma. It was found that the expression of Rubicon protein is increased, thus allowing to conclude that the LAP pathway is activated in monocytes of healthy donors, thus allowing phagocytosis of dying T cells. At the same time, the components characteristic of both autophagy and LC3-associated phagocytosis are activated in the monocytes of patients with severe atopic asthma. However, one should note that decreased expression of the Rubicon protein, a putative marker of LC3-associated phagocytosis, has been clearly confirmed.

About the Authors

B. R. Ibragimov
Kazan (Volga Region) Federal University
Russian Federation

Ibragimov B.R., Junior Research Associate, Laboratory of Immunopathology, Institute of Fundamental Medicine and Biology 

Kazan, Republic of Tatarstan



Yu. V. Skibo
Kazan (Volga Region) Federal University
Russian Federation

Skibo Yu.V., PhD (Biology), Senior Research Associate, Laboratory of Immunopathology, Institute of Fundamental Medicine and Biology 

Kazan, Republic of Tatarstan



I. D. Reshetnikova
Kazan (Volga Region) Federal University; Kazan Research Institute of Epidemiology and Microbiology
Russian Federation

Reshetnikova I.D., PhD (Medicine) Acting Director; Associate Professor, Institute of Fundamental Medicine and Biology 

Kazan, Republic of Tatarstan



S. N. Abramov
Kazan (Volga Region) Federal University
Russian Federation

Abramov S.N., Junior Research Associate, Laboratory of Immunopathology, Institute of Fundamental Medicine and Biology 

Kazan, Republic of Tatarstan



A. G. Daminova
Kazan (Volga Region) Federal University
Russian Federation

Daminova A.G., PhD (Biology), Senior Research Associate, Interdisciplinary Center for Analytical Microscopy 

Kazan, Republic of Tatarstan



V. G. Evtyugin
Kazan (Volga Region) Federal University
Russian Federation

Evtyugin V.G., PhD (Biology), Director, Interdisciplinary Center for Analytical Microscopy 

Kazan, Republic of Tatarstan



Z. I. Abramova
Kazan (Volga Region) Federal University
Russian Federation

Abramova Z.I., PhD, MD (Biology), Professor, Department of Biochemistry, Biotechnology and Pharmacology, Chief Research Associate, Laboratory of Immunopathology, Institute of Fundamental Medicine and Biology 

Kazan, Republic of Tatarstan



References

1. Deev R.V., Bilyalov A.I., Zhampeisov T.M. Modern ideas about cell death. Geny i Kletki = Genes and Cells, 2018, Vol. 13, no. 1, pp. 6-19. (In Russ.)

2. Ibragimov B.R., Skibo Yu.V., Abramova Z.I. Autophagy and LC3-associated phagocytosis: similarities and differences. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 2, pp. 233-252. (In Russ.) doi: 10.15789/1563-0625-AAL-2569.

3. Skibo Yu.V., Tikhomirova M.V., Abramov S.N., Biktagirova E.M., Reshetnikova I.D., Akberova N.I., Abramova Z.I. Analysis of the expression of key protein regulators of apoptosis and autophagy in T-lymphocytes of patients with bronchial asthma. Uchenye zapiski Kazanskogo universiteta. Seriya estestvennye nauki = Scientific Notes of Kazan University. Natural Science Series, 2019, Vol. 161, no. 4, pp. 505-520. (In Russ.)

4. Skibo Yu.V., Fathullina A.R., Ibragimov B.R., Abramov S.N., Ismagilova R.R., Biktagirova E.M., Andrianova I.A., Maksudova A.N., Abramova Z.I. Induction of apoptosis and autophagy in T-lymphocytes of patients with Systemic Lupus Erythematosus. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2020, Vol. 101, no. 3, pp. 347-355. (In Russ.)

5. Smolnikova M.V., Smirnova S.V., Ilyenkova N.A., Konopleva O.S. Immunological markers of uncontrolled atopic bronchial asthma in children. Meditsinskaya immunologiya = Medical Immunology (Russia), 2017, Vol. 19, no. 4, pp. 453-460. (In Russ.) doi: 10.15789/1563-0625-2017-4-453-460.

6. Yarilin A.A., Nikonova M.F., Yarilina A.A., Varfolomeeva M.I., Grigorieva T.Yu. Apoptosis, imortance of its evaluation in immunopathological states. Meditsinskaya immunologiya = Medical Immunology (Russia), 2000, Vol. 2, no. 1, pp. 7-16. (In Russ.)

7. Aguirre L.A., Montalbán-Hernández K., Avendaño-Ortiz J., Marín E., Lozano R., Toledano V., SánchezMaroto L., Terrón V., Valentín J., Pulido E., Casalvilla J.C., Rubio C., Diekhorst L., Laso-García F., Del Fresno C., Collazo-Lorduy A., Jiménez-Munarriz B., Gómez-Campelo P., Llanos-González E., Fernández-Velasco M., Rodríguez-Antolín C., Pérez de Diego R., Cantero-Cid R., Hernádez-Jimenez E., Álvarez E., Rosas R., Dies LópezAyllón B., de Castro J., Wculek S.K., Cubillos-Zapata C., Ibáñez de Cáceres I., Díaz-Agero P., Gutiérrez Fernández M., Paz de Miguel M., Sancho D., Schulte L., Perona R., Belda-Iniesta C., Boscá L., López-Collazo E. Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. Oncoimmunology, 2020, Vol. 9, no. 1, 1773204. doi: 10.1080/2162402X.2020.1773204.

8. Arteaga-Blanco L.A., Mojoli A., Monteiro R.Q., Sandim V., Menna-Barreto R.F.S., Pereira-Dutra F.S., Bozza P.T., Resende R.O., Bou-Habib D.C. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PloS One, 2020, Vol. 15, no. 8, e0237795. doi: 10.1371/journal.pone.0237795.

9. Boada-Romero E., Martinez J., Heckmann B.L., Green D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol., 2020, Vol. 21, no. 7, pp. 398-414.

10. Costa G.M.J., Lacerda S.M.S.N., Figueiredo A.F.A., Wnuk N.T., Brener M.R.G., Andrade L.M., CampolinaSilva G.H., Kauffmann-Zeh A., Pacifico L.G.G., Versiani A. F., Antunes M.M., Souza F.R., Cassali G.D., CaldeiraBrant A.L., Chiarini-Garcia H., de Souza F.G., Costa V.V., da Fonseca F.G., Nogueira M.L., Campos G.R.F., Kangussu L.M., Martins E.M.N., Antonio L.M., Bittar C., Rahal P., Aguiar R.S., Mendes B.P., Procópio M.S., Furtado T.P., Guimaraes Y.L., Menezes G.B., Martinez-Marchal A., Orwig K.E., Brieño-Enríquez M., Furtado M.H. High SARS-CoV-2 tropism and activation of immune cells in the testes of non-vaccinated deceased COVID-19 patients. BMC Biol., 2023, Vol. 21, no. 1, 36. doi: 10.1186/s12915-022-01497-8.

11. Cunha L.D., Yang M., Carter R., Guy C., Harris L., Crawford J.C., Quarato G., Boada-Romero E., Kalkavan H., Johnson M.D.L., Natarajan S., Turnis M.E., Finkelstein D., Opferman J.T., Gawad C., Green D.R. LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, Vol. 175, no. 2, pp. 429-441.

12. Florey O., Kim S.E., Sandoval C.P., Haynes C.M., Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol., 2011, Vol. 13, no. 11, pp. 1335-1343.

13. Gomzikova M.O., Zhuravleva M.N., Miftakhova R.R., Arkhipova S.S., Evtugin V.G., Khaiboullina S.F., Kiyasov A.P., Persson J.L., Mongan N.P., Pestell R.G., Rizvanov A.A. Cytochalasin B-induced membrane vesicles convey angiogenic activity of parental cells. Oncotarget, 2017, Vol. 8, no. 41, pp. 70496-70507.

14. Heckmann B.L., Boada-Romero E., Cunha L.D., Magne J., Green D.R. LC3-Associated Phagocytosis and Inflammation. J. Mol. Biol., 2017, Vol. 429, no. 23, pp. 3561-3576.

15. Heckmann B.L., Teubner B.J.W., Tummers B., Boada-Romero E., Harris L., Yang M., Guy C.S., Zakharenko S.S., Green D.R. LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease. Cell, 2019, Vol. 178, no. 3, pp. 536-551.

16. Herb M., Gluschko A., Schramm M. LC3-associated phagocytosis – The highway to hell for phagocytosed microbes. Semin. Cell Dev. Biol., 2020, Vol. 101, pp. 68-76.

17. Inomata M., Xu S., Chandra P., Meydani S.N., Takemura G., Philips J.A., Leong J.M. Macrophage LC3- associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging. Proc. Natl. Acad. Sci. USA, 2020, Vol. 117, no. 52, pp. 33561-33569.

18. Ishii K.J., Kawagoe T., Koyama S., Matsui K., Kumar H., Kawai T., Uematsu S., Takeuchi O., Takeshita F., Coban C., Akira S. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 2008, Vol. 451, no. 7179, pp. 725-729.

19. Ji W.J., Ma Y.Q., Zhou X., Zhang Y.D., Lu R.Y., Sun H.Y., Z.Z. G., Zhang Z., Li Y.M., Wei L.Q. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J. Immunol. Met., 2014, Vol. 403, no. 1-2, pp. 7-16.

20. Kelley S.M., Ravichandran K.S. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep., 2021, Vol. 22, no. 6, e52564. doi: 10.15252/embr.202152564.

21. Lambrecht B.N., Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol., 2017, Vol. 18, no. 10, pp. 1076-1083.

22. Li C.H., Tsai M.L., Chiou H.C., Lin Y.C., Liao W.T., Hung C.H. Role of Macrophages in Air Pollution Exposure Related Asthma. Int. J. Mol. Sci., 2022. Vol. 23, no. 20, 12337. doi: 10.3390/ijms232012337.

23. Li T., Kong L., Li X., Wu S., Attri K. S., Li Y., Gong W., Zhao B., Li L., Herring L.E., Asara J. M., Xu L., Luo X., Lei Y.L., Ma Q., Seveau S., Gunn J.S., Cheng X., Singh P.K., Green D.R., Wang H., Wen H. Listeria monocytogenes upregulates mitochondrial calcium signalling to inhibit LC3-associated phagocytosis as a survival strategy. Nat. Microbiol., 2021, Vol. 6, no. 3, pp. 366-379.

24. Li Y., Yong Y.L., Yang M., Wang W., Qu X., Dang X., Shang D., Shao Y., Liu J., Chang Y. Fine particulate matter inhibits phagocytosis of macrophages by disturbing autophagy. FASEB J., 2020, Vol. 34, no. 12, pp. 16716-16735.

25. Lim J., Park H., Heisler J., Maculins T., Roose-Girma M., Xu M., Mckenzie B., van Lookeren Campagne M., Newton K., Murthy A. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. eLife, 2019, Vol. 8, e44452. doi: 10.7554/eLife.44452.

26. Magné J., Green D.R. LC3-associated endocytosis and the functions of Rubicon and ATG16L1. Sci. Adv., 2022, Vol. 8, no. 43, eabo5600. doi: 10.1126/sciadv.abo5600.

27. Martinez J., Cunha L.D., Park S., Yang M., Lu Q., Orchard R., Li Q.Z., Yan M., Janke L., Guy C., Linkermann A., Virgin H.W., Green D.R. Corrigendum: Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature, 2016, Vol. 539, no. 7627, 124. doi: 10.1038/nature19837.

28. Masud S., Prajsnar T.K., Torraca V., Lamers G.E.M., Benning M., Vaart M.V.D., Meijer A.H. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy, 2019, Vol. 15, no. 5, pp. 796-812.

29. Masud S., van der Burg L., Storm L., Prajsnar T.K., Meijer A.H. Rubicon-Dependent Lc3 Recruitment to Salmonella-Containing Phagosomes Is a Host Defense Mechanism Triggered Independently From Major Bacterial Virulence Factors. Front. Cell. Infect. Microbiol., 2019, Vol. 9, 279. doi: 10.3389/fcimb.2019.00279.

30. Matsunaga K., Saitoh T., Tabata K., Omori H., Satoh T., Kurotori N., Maejima I., Shirahama-Noda K., Ichimura T., Isobe T., Akira S., Noda T., Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol., 2009, Vol. 11, no. 4, pp. 385-396.

31. Mehta P., Henault J., Kolbeck R., Sanjuan M.A. Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Curr. Opin. Immunol., 2014, Vol. 26, pp. 69-75.

32. Minnullina L., Kostennikova Z., Evtugin V., Akosah Y., Sharipova M., Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int. Microbiol., 2022, Vol. 25, no. 1, pp. 111-122.

33. Morioka S., Maueröder C., Ravichandran K.S. Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity, 2019, Vol. 50, no. 5, pp. 1149-1162.

34. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol., 1963, Vol. 17, no. 1, pp. 208-212.

35. Sanjuan M.A., Dillon C.P., Tait S.W., Moshiach S., Dorsey F., Connell S., Komatsu M., Tanaka K., Cleveland J.L., Withoff S., Green D.R. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, Vol. 450, no. 7173, pp. 1253-1257.

36. Sun Q., Westphal W., Wong K.N., Tan I., Zhong Q. Rubicon controls endosome maturation as a Rab7 effector. Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, no. 45, pp. 19338-19343.

37. Tabata K., Matsunaga K., Sakane A., Sasaki T., Noda T., Yoshimori T. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell, 2010, Vol. 21, no. 23, pp. 4162-4172.

38. Yang C.S., Lee J.S., Rodgers M., Min C.K., Lee J.Y., Kim H.J., Lee K.H., Kim C.J., Oh B., Zandi E., Yue Z., Kramnik I., Liang C., Jung J.U. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe, 2012, Vol. 11, no. 3, pp. 264-276.

39. Zhang P., Zhu J., Zhang L., Lv X., Guo D., Liao L., Huang S., Peng Z. The Effects of Ginkgo biloba Extract on Autophagy in Human Macrophages Stimulated by Cigarette Smoke Extract. Front. Biosci. (Landmark Ed.), 2023, Vol. 28, no. 3, 50. doi: 10.31083/j.fbl2803050.

40. Zhong Y., Wang Q.J., Li X., Yan Y., Backer J.M., Chait B.T., Heintz N., Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol., 2009, Vol. 11, no. 4, pp. 468-476.


Supplementary files

Review

For citations:


Ibragimov B.R., Skibo Yu.V., Reshetnikova I.D., Abramov S.N., Daminova A.G., Evtyugin V.G., Abramova Z.I. Effect of the Rubicon protein on LC3-associated phagocytosis by monocytes in the patients with severe atopic bronchial asthma. Medical Immunology (Russia). 2024;26(6):1213-1222. (In Russ.) https://doi.org/10.15789/1563-0625-EOT-2868

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)