Preview

Медицинская иммунология

Расширенный поиск

Потенциальные мишени гепарина при прогрессировании и метастазировании злокачественных новообразований

https://doi.org/10.15789/1563-0625-PTO-2864

Аннотация

Онкологические заболевания занимают одну из лидирующих позиций в структуре смертности населения. Комплексный подход в онкотерапии, помимо прямого воздействия на злокачественные опухоли, направлен на снижение рисков их рецидивов и метастазирования, а также снижение тяжести побочных эффектов противоопухолевой химио- и радиотерапии заболевания. При онкологических заболеваниях повышается вязкость крови, что сопровождается гиперкоагуляционным синдромом. Для преодоления его последствий активно используются прямые и непрямые антикоагулянты, в частности гепарин и его производные. Биологические функции и структурные особенности гепарина делают его потенциальной универсальной платформой в разработке препаратов для широкого применения, в том числе в онкологии. Появление технологии фракционирования гепаринов и получения низкомолекулярных форм и их производных позволило сосредоточиться не только на антикоагуляционных эффектах, но и получать фракции с целевой фармакологической активностью. Применение антикоагулянтов в некоторых случаях позволило выявить их противоопухолевый эффект, что послужило основанием для более детального исследования фармакотерапевтических эффектов этой группы препаратов. В настоящее время получены данные о множественных путях взаимодействия гепарина и опухолевых клеток. В процессе развития первичной опухоли и при формировании вторичных метастазов в отдаленных органах есть ряд общих черт, обусловленных использованием одних и тех же молекулярно-клеточных механизмов. В качестве мишеней для гепарина здесь могут выступать молекулы, отвечающие за межклеточные взаимодействия как между опухолевыми клетками, так и между клетками опухоли и опухоль ассоциированными иммунокомпетентными клетками, преимущественно лимфоцитами и макрофагами, что способствует уходу опухоли от иммунного надзора. Другой важной мишенью являются цитокины, стимулирующие опухолевый ангиогенез. Производные гепарина способны подавлять активность опухолей и нарушать процессы метастазирования на различных этапах, ингибируя активность гепараназы, P-/L-селектина, ангиогенез, модулируя хемокиновую ось CXCL12-CXCR4, регулируя активность ОАМ.

Данный краткий обзор рассматривает реальные контуры понимания и использования потенциальных антиметастатических свойств гепарина и его производных при злокачественных новообразованиях костной ткани, поскольку препараты на основе гепарина применяются в качестве антикоагулянтов при эндопротезировании крупных суставов и дефектов кости у больных остеосаркомой.

Об авторах

В. В. Малащенко
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»
Россия

Малащенко Владимир Владимирович – к.б.н., научный сотрудник Центра иммунологии и клеточных биотехнологий.

Калининград


Конфликт интересов:

Нет



И. А. Хлусов
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»; ФГБОУ ВО «Сибирский государственный медицинский университет» Министерства здравоохранения РФ
Россия

Хлусов Игорь Альбертович – д.м.н., cтарший научный сотрудник Центра иммунологии и клеточных биотехнологий, НТП «Фабрика», ФГАОУ ВО «БФУ им. И. Канта»; профессор кафедры морфологии и общей патологии ФГБОУ ВО «СибГМУ» МЗ РФ.

Калининград; Томск


Конфликт интересов:

Нет



К. А. Юрова
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»
Россия

Юрова Кристина Алексеевна – к.м.н., научный сотрудник Центра иммунологии и клеточных биотехнологий.

Калининград


Конфликт интересов:

Нет



О. Г. Хазиахматова
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»
Россия

Хазиахматова Ольга Геннадьевна – к.б.н., научный сотрудник Центра иммунологии и клеточных биотехнологий.

Калининград


Конфликт интересов:

Нет



Н. М. Тодосенко
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»
Россия

Тодосенко Наталья Михайловна – к.б.н., cтарший научный сотрудник Центра иммунологии и клеточных биотехнологий.

Калининград


Конфликт интересов:

Нет



Л. С. Литвинова
Научно-технологический парк «Фабрика», ФГАОУ ВО «Балтийский федеральный университет имени Иммануила Канта»; ФГБОУ ВО «Сибирский государственный медицинский университет» Министерства здравоохранения РФ
Россия

Литвинова Лариса Сергеевна – д.м.н., директор Центра иммунологии и клеточных биотехнологий НТП «Фабрика», ФГАОУ ВО «БФУ им. И. Канта»; научный сотрудник ФГБОУ ВО «СибГМУ» МЗ РФ.

236001, Калининград, уд. Гайдара, 6

Тел.: 8 (4012) 59-55-95 (доп. 6634)


Конфликт интересов:

Нет



Список литературы

1. Abbadi A., Loftis J., Wang A., Yu M., Wang Y., Shakya S., Li X., Maytin E., Hascall V. Heparin inhibits proinflammatory and promotes anti-inflammatory macrophage polarization under hyperglycemic stress. J. Biol. Chem., 2020, Vol. 295, no. 15, pp. 4849-4857.

2. AbuSamra D.B., Al-Kilani A., Hamdan S.M., Sakashita K., Gadhoum S.Z., Merzaban J.S. Quantitative characterization of E-selectin interaction with native CD44 and P-selectin glycoprotein ligand-1 (PSGL-1) using a real time immunoprecipitation-based binding assay. J. Biol. Chem., 2015, Vol. 290, no. 35, pp. 21213-21230.

3. Alam F., Al-Hilal T.A., Chung S.W., Seo D., Mahmud F., Kim H.S., Kim S.Y., Byun Y. Oral delivery of a potent anti-angiogenic heparin conjugate by chemical conjugation and physical complexation using deoxycholic acid. Biomaterials, 2014, Vol. 35, no. 24, pp. 6543-6552.

4. Alam F., Al-Hilal T.A., Park J., Choi J.U., Mahmud F., Jeong J.H., Kim I.S., Kim S.Y., Hwang S.R., Byun Y. Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate). Biomaterials, 2016, Vol. 86, pp. 56-67.

5. Alekseeva A., Mazzini G., Giannini G., Naggi A. Structural features of heparanase-inhibiting non-anticoagulant heparin derivative Roneparstat. Carbohydr. Polym., 2017, Vol. 156, pp. 470-480.

6. Alyahya R., Sudha T., Racz M., Stain S.C., Mousa S.A. Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. Int. J. Oncol., 2015, Vol. 46, no. 3, pp. 1225-1231.

7. Au S.H., Storey B.D., Moore J.C., Tang Q., Chen Y.L., Javaid S., Sarioglu A.F., Sullivan R., Madden M.W., O’Keefe R. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl Acad. Sci., 2016, Vol. 113, no. 18, pp. 4947-4952.

8. Benovic J.L., Marchese A. A new key in breast cancer metastasis. Cancer Cell, 2014, Vol. 6, no. 5, pp. 429-430.

9. Bertini S., Bisio A., Torri G., Bensi D., Terbojevich M. Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolecules, 2005, Vol. 6, no. 1, pp. 168-173.

10. Bertini S., Fareed J., Madaschi L., Risi G., Torri G., Naggi A. Characterization of PF4-heparin complexes by photon correlation spectroscopy and zeta potential. Clin. Appl. Thromb. Hemost., 2017, Vol. 23, no. 7, pp. 725-734.

11. Boothello R.S., Patel N.J., Sharon C., Abdelfadiel E.I., Morla S., Brophy D.F., Lippman H.R., Desai U.R., Patel B.B. A unique nonsaccharide mimetic of heparin hexasaccharide inhibits colon cancer stem cells via p38 MAP kinase activation. Mol. Cancer Ther., 2019, Vol. 18, no. 1, pp. 51-61.

12. Borsig L., Wong R., Feramisco J., Feramisco J., Nadeau D.R., Varki N.M., Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci., 2001, Vol. 98, no. 6, pp. 3352-3357.

13. Borsig L., Stevenson J.L., Varki A. Heparin in cancer: role of selectin interactions. Cancer-associated thrombosis. CRC Press, A.A. Khorana, and C.W. Francis, editors. New York: Informa Healthcare, 2007, pp. 113-130.

14. Bruno V., Svensson-Arvelund J., Rubér M., Berg G., Piccione E., Jenmalm M.C., Ernerudh J. Effects of low molecular weight heparin on the polarization and cytokine profile of macrophages and T helper cells in vitro. Sci. Rep., 2018, Vol. 8, no. 1, pp. 1-9.

15. Cai Z., Teng L., Zhou J., Yan Y., Zhang Y., Lv G., Chen J. Design and synthesis of a native heparin disaccharide grafted poly 2 aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis. Int. J. Biol. Macromol., 2019, Vol. 126, pp. 612-619.

16. Cai Z., Yan Y., Zhou J., Yang Y., Zhang Y., Chen J. Multifunctionalized brush-like glycopolymers with high affinity to P-selectin and antitumor metastasis activity. Biomacromolecules, 2021, Vol. 22, no. 3, pp. 1177-1185.

17. Cassinelli G., Naggi A. Old and new applications of non-anticoagulant heparin. Int. J. Cardiol., 2016, Vol. 212, pp. S14-S21.

18. Ceol M., Vianello D., Schleicher E., Anglani F., Barbanti M., Bonfante L., Bertaglia G., Graziotto R., d’Angelo A., del Prete D., Gambaro G. Heparin reduces glomerular infiltration and TGF-beta protein expression by macrophages in puromycin glomerulosclerosis. J. Nephrol., 2003, Vol. 16, no. 2, pp. 210-218.

19. Chen D. Heparin beyond anti-coagulation. Curr. Res. Transl. Med., 2021, Vol. 69, no. 4, 103300. doi: 10.1016/j.retram.2021.103300.

20. Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci., 2019, Vol. 26, no. 1, pp. 1-13.

21. Choi J.U., Chung S.W., Al-Hilal T.A., Alam F., Park J., Mahmud F., Jeong J.H., Kim S.Y., Byun Y. A heparin conjugate, LHbisD4, inhibits lymphangiogenesis and attenuates lymph node metastasis by blocking VEGF-C signaling pathway. Biomaterials, 2017, Vol. 139, pp. 56-66.

22. Dehne N., Mora J., Namgaladze D., Weigert A., Brüne B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr. Opin. Pharmacol., 2017, Vol. 35, pp. 12-19.

23. Falanga A., Ay C., di Nisio M., Gerotziafas G., Langer F., Lecumberri R., Mandala M., Maraveyas A., Pabinger I., Sinn M., Syrigos K., Young A., Jordan K. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol., 2023. doi: 10.1016/j.annonc.2022.12.014.

24. Ferro V., LiuL., Johnstone K.D., Wimmer N., Karoli T., Handley P., Rowley J., Dredge K., Li C. P., HammondE., Davis K., Sarimaa L., Harenberg J., Bytheway I. Discovery of PG545: a highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J. Med. Chem, 2012, Vol. 55, no. 8, pp. 3804-3813.

25. Fiedler E.C., Hemann M.T. Aiding and abetting: how the tumor microenvironment protects cancer from chemotherapy. Ann. Rev. Cancer Biol., 2019, Vol. 3, pp. 409-428.

26. Galli M., Chatterjee M., Grasso M., Specchia G., Magen H., Einsele H., Celeghini I., Barbieri P., Paoletti D., Pace S., Sanderson R.D., Rambaldi A., Nagler A. Phase I study of the heparanase inhibitor roneparstat: An innovative approach for ultiple myeloma therapy. Haematologica, 2018, Vol. 103, no. 10, e469. doi: 10.3324/haematol.2017.182865.

27. Gomes A.M., Kozlowski E.O., Borsig L., Teixeira F.C., Vlodavsky I., Pavao M.S. Antitumor properties of a new non-anticoagulant heparin analog from the mollusk Nodipecten nodosus: Effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology, 2015, Vol. 25, no. 4, pp. 386-393.

28. Guo J., Yan Y., Yan Y., Guo Q., Zhang M., Zhang J., Goltzman D. Tumor-associated macrophages induce the expression of FOXQ1 to promote epithelial-mesenchymal transition and metastasis in gastric cancer cells. Oncol. Rep., 2017, Vol. 38, no. 4, pp. 2003-2010.

29. Handel T.M., Johnson Z., Crown S.E., Lau E.K., Sweeney M., Proudfoot A.E. Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu. Rev. Biochem, 2005, Vol. 74, pp. 385-410.

30. Harvey J.R., Mellor P., Eldaly H., Lennard T.W., Kirby J.A., Ali S. Inhibition of CXCR4-mediated breast cancer metastasis: a potential role for heparinoids? Clin. Cancer Res., 2007, Vol. 13, no. 5, pp. 1562-1570.

31. Häuselmann I., Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front. Oncol., 2014, Vol. 4, 28. doi: 10.3389/fonc.2014.00028.

32. He Y., Kozaki K., Karpanen T., Koshikawa K., Yla-Herttuala S., Takahashi T., Alitalo K. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer Inst., 2002, Vol. 94, no. 11, pp. 819-825.

33. Hegde S., Leader A.M., Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity, 2021, Vol. 54, no. 5, pp. 875-884.

34. Hostettler N., Naggi A., Torri G., Ishai-Michaeli R., Casu B., Vlodavsky I., Borsig L. P-selectin-and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. FASEB J., 2007, Vol. 21, no. 13, pp. 3562-3572.

35. Huang Z., Yin Y., Yao S., Hu Y., Feng Y., Li M., Bian Z., Zhang J., Qin Y., Qi X. The Immune-microenvironment Confers Chemoresistance of Colorectal Cancer through Macrophage-Derived IL6. Clin. Cancer Res., 2017, Vol. 23, no. 23, pp. 7375-7387.

36. Iozzo R.V., Sanderson R.D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med., 2011, Vol. 15, no. 5, pp. 1013-1031.

37. Kannagi R., Izawa M., Koike T., Miyazaki K., Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci., 2004, Vol. 95, no. 5, pp. 377-384.

38. Kansas G.S. Selectins and their ligands: current concepts and controversies. Blood, 1996, Vol. 88, pp. 3259-3287.

39. Kashiwakura Y., Kojima H., Kanno Y., Hashiguchi M., Kobata T. Heparin affects the induction of regulatory T cells independent of anti-coagulant activity and suppresses allogeneic immune responses. Clin. Exp. Immunol., 2020, Vol. 202, no. 1, pp. 119-135.

40. Kevane B., Egan K., Allen S., Kevane B., Egan K., Allen S., Maguire P., Neary E., Lennon Á., Áinle F.N. Endothelial barrier protective properties of low molecular weight heparin: A novel potential tool in the prevention of cancer metastasis? Res. Pract. Thromb. Haemost., 2017, Vol. 1, no. 1, pp. 23-32.

41. Key N.S., Khorana A.A., Kuderer N.M., Bohlke K., Lee A.Y., Arcelus J.I., Wong S.L., Balaban E.P., Flowers C.R., Francis C.W., Gates L.E., Kakkar A.K., Levine M.N., Liebman H.A., Tempero M.A., Lyman G.H., Falanga A. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol., 2020, Vol. 38, no. 5, pp. 496-520.

42. Khorana A.A., Cohen A.T., Carrier M., Meyer G., Pabinger I., Kavan P., Wells P. Prevention of venous thromboembolism in ambulatory patients with cancer. Esmo Open, 2020, Vol. 5, no. 6, e000948. doi: 10.1136/esmoopen-2020-000948.

43. Koenig A., Norgard-Sumnicht K., Linhardt R., Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J. Clin. Invest., 1998, Vol. 101, no. 4, pp. 877-889.

44. Kovacsovics T.J., Mims A., Salama M.E., Pantin J., Rao N., Kosak K.M., Ahorukomeye P., Glenn M.J., Deininger M.W.N., Boucher K.M., Bavisotto L.M., Gutierrez-Sanchez G., Kennedy T.P., Marcus S.G., Sham P.J. Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv., 2018, Vol. 2, no. 4, pp. 381-389.

45. Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging biological principles of metastasis. Cell, 2017, Vol. 168, no. 4, pp. 670-691.

46. Laporte S., Liotier J., Bertoletti L., Kleber F.X., Pineo G.F., Chapelle C., Moulin N., Mismetti P. Individual patient data meta-analysis of enoxaparin vs. unfractionated heparin for venous thromboembolism prevention in medical patients. J. Thromb. Haemost., 2011, Vol. 9, no. 3, pp. 464-472.

47. Läubli H., Stevenson J.L., Varki A., Varki N.M., Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res., 2006, Vol. 66, no. 3, pp. 1536-1542.

48. Lever R., Hoult J.R.S., Page C.P. The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br. J. Pharmacol., 2000, Vol. 129, no. 3, pp. 533-540.

49. Levy-Adam F., Abboud-Jarrous G., Guerrini M., Beccati D., Vlodavsky I., Ilan N. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J. Biol. Chem., 2005, Vol. 280, no. 21, pp. 20457-20466.

50. Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol., 2007, Vol. 7, no. 9, pp. 678-689.

51. Li L., Ling Y., Huang M., Yin T., Gou S.M., Zhan N.Y., Xiong J.X., Wu H.S., Yang Z.Y., Wang C.Y. Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages. Cytokine, 2015, Vol. 72, no. 1, pp. 36-42.

52. Li N. Platelets in cancer metastasis: To help the “villain” to do evil. Int. J. Cancer, 2016, Vol. 138, no. 9, pp. 2078-2087.

53. Liebsch A.G., Schillers H. Quantification of heparin’s antimetastatic effect by single-cell force spectroscopy. J. Mol. Recognit., 2021, Vol. 34, no. 1, e2854. doi: 10.1002/jmr.2854.

54. Lin S.C., Wu C.P., Tseng T., Jhang Y., Lee S.C. Role of syndecan-1 and exogenous heparin in hepatoma sphere formation. Biochem. Cell Biol., 2020, Vol. 98, no. 2, pp. 112-119.

55. Ling Y., Yang Z.Y., Yin T., Li L., Yuan W.W., Wu H.S., Wang C.Y. Heparin changes the conformation of high-mobility group protein 1 and decreases its affinity toward receptor for advanced glycation endproducts in vitro. Int. immunopharmacol., 2011, Vol. 11, no. 2, pp. 187-193.

56. Litvinova L.S., Yurova K.A., Khaziakhmatova O.G., Khlusova M.Y., Malashchenko V.V., Shunkin E.O., Todosenko N.M., Norkin I.K., Ivanov P.A., Khlusov I.A. Osteogenic and angiogenic properties of heparin as a system for delivery of biomolecules for bone bioengineering: a brief critical review. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2021, Vol. 15, no. 2, pp. 147-152.

57. Liu Z., Wang L., Dong Z., Pan J., Zhu H., Zhang Z., Ma X. Heparin inhibits lipopolysaccharide-induced inflammation via inducing caveolin-1 and activating the p38/mitogen-activated protein kinase pathway in murine peritoneal macrophages. Mol. Med. Rep., 2015, Vol. 12, no. 3, pp. 3895-3901.

58. Loka R.S., Sletten E.T., Barash U., Vlodavsky I., Nguyen H.M. Specific inhibition of heparanase by a glycopolymer with well-defined sulfation pattern prevents breast cancer metastasis in mice. ACS Appl. Mater. Interfaces, 2018, Vol. 11, no. 1, pp. 244-254.

59. Ma L., Qiao H., He C., Yang Q., Cheung C.H.A., Kanwar J.R., Sun X. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest. New Drugs, 2012, Vol. 30, pp. 508-517.

60. Ma S.N., Mao Z.X., Wu Y., Liang M.X., Wang D.D., Chen X., Chang P., Zhang W., Tang J.H. The anti-cancer properties of heparin and its derivatives: A review and prospect. Cell Adh. Migr., 2020, Vol. 14, no. 1, pp. 118-128.

61. Mandalà M., Labianca R. Venous thromboembolism (VTE) in cancer patients. ESMO clinical recommendations for prevention and management. Thromb. Res., 2010, Vol. 125, pp. S117-S119.

62. Martínez V.G., Rubio C., Martínez-Fernández M., Segovia C., López-Calderón F., Garín M. I., Teijeira A., Munera-Maravilla E., Varas A., Sacedón R., Guerrero F., Villacampa F., de la Rosa F., Castellano D., López-Collazo E., Paramio J.M., Vicente Á., Dueñas M. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder. Clin. Cancer Res., 2017, Vol. 23, no. 23, pp. 7388-7399.

63. Mege D., Aubert M., Lacroix R., Dignat-George F., Panicot-Dubois L., Dubois C. Involvement of platelets in cancers. Semin. Thromb. Hemost., 2019, Vol. 45, no. 6, pp. 569-575.

64. Mellor P., Harvey J.R., Murphy K.J., Pye D., O’Boyle G., Lennard T.W.J., Kirby J.A. Ali S. Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo. Br. J. Cancer, 2007, Vol. 97, no. 6, pp. 761-768.

65. Menter D.G., Tucker S.C., Kopetz S., Sood A.K., Crissman J.D., Honn K.V. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev., 2014, Vol. 33, pp. 231-269.

66. Meyer G., Belmont L. Maladie veineuse thromboembolique et cancer. Rev. Mal. Respir., 2011, Vol. 28, no. 4, pp. 443-452.

67. Micalizzi D.S., Haber D.A., Maheswaran S. Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol. Oncol., 2017, Vol. 11, no. 7, pp. 770-780.

68. Motofei I.G. Biology of cancer; from cellular cancerogenesis to supracellular evolution of malignant phenotype. Cancer Invest., 2018, Vol. 36, no. 5, pp. 309-317.

69. Mousa S.A., Mohamed S. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thromb. Haemost., 2004, Vol. 92, no. 9, pp. 627-633.

70. Mousa S.A., Petersen L.J. Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thromb. Haemost., 2009, Vol. 102, no. 8, pp. 258-267.

71. Nahain A. A., Ignjatovic V., Monagle P., Tsanaktsidis J., Vamvounis G., Ferro V. Anticoagulant heparin mimetics via RAFT polymerization. Biomacromolecules, 2019, Vol. 21, no. 2, pp. 1009-1021.

72. Nguyen K.G., Gillam F.B., Hopkins J.J., Jayanthi S., Gundampati R.K., Su G., Bear J., Pilkington G. R., Jalah R., Felber B.K., Liu J., Thallapuranam S.K., Zaharoff D.A. Molecular mechanisms of heparin-induced modulation of human interleukin 12 bioactivity. J. Biol. Chem., 2019, Vol. 294, no. 12, pp. 4412-4424.

73. Norgard-Sumnicht K.E., Varki N.M., Varki A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science, 1993, Vol. 261, no. 5120, pp. 480-483.

74. Oduah E.I., Linhardt R.J., Sharfstein S.T. Heparin: past, present, and future. Pharmaceuticals, 2016, Vol. 9, no. 3, 38. doi: 10.3390/ph9030038.

75. Ostuni R., Kratochvill F., Murray P.J., Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol., 2015, Vol. 36, no. 4, pp. 229-239.

76. Park J., Kim J.Y., Hwang S.R., Mahmud F., Byun Y. Chemical conjugate of low molecular weight heparin and suramin fragment inhibits tumor growth possibly by blocking VEGF165. Mol. Pharm., 2015, Vol. 12, no. 11, pp. 3935-3942.

77. Pei X., Long X., Zhang L., Ye Y., Guo J., Liu P., Rui Z., Ning J., Yu W., Feng W. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of tumor-associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology, 2018, Vol. 7, no. 7, e1440166. doi: 10.1080/2162402x.2018.1440166.

78. Petrovich E., Feigelson S.W., Stoler-Barak L., Hatzav M., Solomon A., Bar-Shai A., Ilan N., Li J.P., Engelhardt B., Vlodavsky I., Alon R. Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs. FASEB J., 2016, Vol. 30, no. 5, pp. 1767-1778.

79. Qi L.N., Xiang B.D., Wu F.X., Ye J.Z., Zhong J.H., Wang Y.Y., Chen Y.Y., Chen Z.S., Ma L., Chen J. Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma. Cancer Res., 2018, Vol. 78, no. 16, pp. 4731-4744.

80. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell, 2010, Vol. 141, no. 1, pp. 39-51.

81. Roberts N., Kloos B., Cassella M., Podgrabinska S., Persaud K., Wu Y., Pytowski B., Skobe M. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res., 2006, Vol. 66, no. 5, pp. 2650-2657.

82. Roepke E.R., Bruno V., Nedstrand E., Boij R., Strid C.P., Piccione E., Berg G., Svensson-Arvelund J., Jenmalm M.C., Rubér M., Ernerudh J. Author Correction: Low-molecular-weight-heparin increases Th1-and Th17-associated chemokine levels during pregnancy in women with unexplained recurrent pregnancy loss: a randomised controlled trial. Sci.Rep., 2020, Vol. 10, 10600. doi: 10.1038/s41598-020-67807-8 .

83. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol., 2018, Vol. 11, no. 1, pp. 1-15.

84. Schlesinger M., Schmitz P., Zeisig R., Naggi A., Torri G., Casu B., Bendas G. The inhibition of the integrin VLA-4 in MV3 melanoma cell binding by non-anticoagulant heparin derivatives. Thromb. Res., 2012, Vol. 129, no. 5, pp. 603-610.

85. Schlesinger M., Simonis D., Schmitz P., Fritzsche J., Bendas G. Binding between heparin and the integrin VLA-4. Thromb. Haemost., 2009, Vol. 102, no. 11, pp. 816-822.

86. Seyrek E., Dubin P. Glycosaminoglycans as polyelectrolytes. Adv. Colloid Interface Sci., 2010, Vol. 158, no. 1-2, pp. 119-129.

87. Shatz M., Liscovitch M. Caveolin-1: a tumor-promoting role in human cancer. Int. J. Radiat. Biol., 2008, Vol. 84, no. 3, pp. 177-189.

88. Shirure V.S., Liu T., Delgadillo L.F., Cuckler C.M., Tees D.F., Benencia F., Goetz D.J., Burdick M.M. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am. J. Physiol. Cell Physiol., 2015, Vol. 308, no. 1, pp. C68-C78.

89. Siegel R.L., Miller K.D., Jemal A. Macrophage diversity enhances tumor progression and metastasis. CA Cancer J. Clin., 2015, Vol. 65, no. 1, pp. 5-29.

90. Simka M. Anti-metastatic activity of heparin is probably associated with modulation of SDF-1-CXCR4 axis. Med. Hypotheses, 2007, Vol. 69, no. 3, 709. doi: 10.1016/j.mehy.2007.01.008.

91. Skuratovskaia D., Vulf M., Khaziakhmatova O., Malashchenko V., Komar A., Shunkin E., Shupletsova V., Goncharov A., Urazova O., Litvinova L. Tissue-specific role of macrophages in noninfectious inflammatory disorders. Biomedicines, 2020, Vol. 8, no. 10, 400. doi: 10.3390/biomedicines8100400.

92. Smith S.A., Morrissey J.H. Heparin is procoagulant in the absence of antithrombin. Thromb. Haemost., 2008, Vol. 100, no. 7, pp. 160-162.

93. Stacker S.A. Achen M.G., Jussila L., Baldwin M.E., Alitalo K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer, 2002, Vol. 2, no. 8, pp. 573-583.

94. Stevenson J.L., Choi S.H., Varki A. Differential metastasis inhibition by clinically relevant levels of heparins – correlation with selectin inhibition, not antithrombotic activity. Clin. Cancer Res., 2005, Vol. 11, no. 19, pp. 7003-7011.

95. Stoler-Barak L., Petrovich E., Aychek T., Gurevich I., Tal O., Hatzav M., Ilan N., Feigelson S.W., Shakhar G., Vlodavsky I., Alon R. Heparanase of murine effector lymphocytes and neutrophils is not required for their diapedesis into sites of inflammation. FASEB J., 2015, Vol. 29, no. 5, pp. 2010-2021.

96. Sudha T., Phillips P., Kanaan C., Linhardt R.J., Borsig L., Mousa S.A. Inhibitory effect of non-anticoagulant heparin (S-NACH) on pancreatic cancer cell adhesion and metastasis in human umbilical cord vessel segment and in mouse model. Clin. Exp. Metastasis, 2012, Vol. 29, pp. 431-439.

97. Tammela T., Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell, 2010, Vol. 140, no. 4, pp. 460-476.

98. Teicher B.A., Fricker S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, Vol. 16, no. 11, pp. 2927-2931.

99. Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, Vol. 147, no. 2, pp. 275-292.

100. Varki A. Selectin ligands: will the real ones please stand up? J. Clin. Invest., 1997, Vol. 99, no. 2, pp. 158-162.

101. Varki A., Varki N.M. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Braz. J. Med. Biol. Res., 2001, Vol. 34, pp. 711-717.

102. Vogel S., Bodenstein R., Chen Q., Feil S., Feil R., Rheinlaender J., Schäffer T.E., Bohn E., Frick J.S., Borst O., Münzer P., Walker B., Markel J., Csanyi G., Pagano P.J., Loughran P., Jessup M.E., Watkins S.C., Bullock G.C., Sperry J.L., Zuckerbraun B.S., Billiar T.R., Lotze M.T., Gawaz M., Neal M.D. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest., 2015, Vol. 125, no. 12, pp. 4638-4654.

103. Walenga J.M., Lyman G.H. Evolution of heparin anticoagulants to ultra-low-molecular-weight heparins: a review of pharmacologic and clinical differences and applications in patients with cancer. Crit. Rev. Oncol. Hematol., 2013, Vol. 88, no. 1, pp. 1-18.

104. Wang X., Luo G., Zhang K., Cao J., Huang C., Jiang T., Liu B., Su L., Qiu Z. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer Metastasis. Cancer Res., 2018, Vol. 78, no. 16, pp. 4586-4598.

105. Wang S., Zhao X., Wu S., Cui D., Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark. Res., 2023, Vol. 11, no. 1, pp. 1-20.

106. Wei C., Yang C., Wang S., Shi D., Zhang C., Lin X., Liu Q., Dou R., Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer, 2019, Vol. 18, no. 1, pp. 1-23.

107. Weissmann M., Bhattacharya U., Feld S., Hammond E., Ilan N., Vlodavsky I. The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix Biol., 2019, Vol. 77, pp. 58-72.

108. Wong T.H., Dickson F.H., Timmins L.R., Nabi I.R. Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression. Cancer Metastasis Rev., 2020, Vol. 39, pp. 455-469.

109. Wu W., Lin L., Yao H., Su F., Su S., Liu Q., Chen J., Chen J., Chen F., He C. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 2014, Vol. 25, no. 5, pp. 605-620.

110. Xu X.R., Carrim N., Neves M.A.D., McKeown T., Stratton T.W., Coelho R.M.P., Lei X., Chen P., Xu J., Dai X., Li B.X., Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J., 2016, Vol. 14, pp. 37-46.

111. Yahya E.B., Alqadhi A.M. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci., 2021, Vol. 269, 119087. doi: 10.1016/j.lfs.2021.119087.

112. Yanguas A., Garasa S., Teijeira Á., Aubá C., Melero I., Rouzaut A. ICAM-1-LFA-1 dependent CD8+ T-lymphocyte aggregation in tumor tissue prevents recirculation to draining lymph nodes. Front. Immunol., 2018, Vol. 9, 2084. doi: 10.3389/fimmu.2018.02084.

113. Yin W., Zhang J., Jiang Y., Juan S. Combination therapy with low molecular weight heparin and Adriamycin results in decreased breast cancer cell metastasis in C3H mice. Exp. Ther. Med., 2014, Vol. 8, no. 4, pp. 1213-1218.

114. Zhang C., Liu Y., Gao Y., Shen J., Zheng S., Wei M., Zeng X. Modified heparins inhibit integrin αIIbβ3 mediated adhesion of melanoma cells to platelets in vitro and in vivo. Int. J. Cancer, 2009, Vol. 125, no. 9, pp. 2058-2065.

115. Zhong G.X., Gong Y., Yu C.J., Wu S.F., Ma Q.P., Wang Y., Ren J., Zhang X.C., Yang W.H., Zhu W. Significantly inhibitory effects of low molecular weight heparin (Fraxiparine) on the motility of lung cancer cells and its related mechanism. Tumor Biol., 2015, Vol. 36, pp. 4689-4697.

116. Zhou H., Roy S., Cochran E., Zouaoui R., Chu C.L., Duffner J., Zhao G., Smith S., Galcheva-Gargova Z., Karlgren J., Dussault N., Kwan R.Y., Moy E., Barnes M., Long A., Honan C., Qi Y.W., Shriver Z., Ganguly T., Schultes B., Venkataraman G., Kishimoto T.K. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PloS One, 2011, Vol. 6, no. 6, e21106. doi: 10.1371/journal.pone.0021106.


Дополнительные файлы

Рецензия

Для цитирования:


Малащенко В.В., Хлусов И.А., Юрова К.А., Хазиахматова О.Г., Тодосенко Н.М., Литвинова Л.С. Потенциальные мишени гепарина при прогрессировании и метастазировании злокачественных новообразований. Медицинская иммунология. 2024;26(2):237-252. https://doi.org/10.15789/1563-0625-PTO-2864

For citation:


Malashchenko V.V., Khlusov I.A., Yurova K.A., Khaziakhmatova O.G., Todosenko N.M., Litvinova L.S. Potential targets of heparin during progression and metastasis of malignant neoplasms. Medical Immunology (Russia). 2024;26(2):237-252. (In Russ.) https://doi.org/10.15789/1563-0625-PTO-2864

Просмотров: 1009


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)