Preview

Медицинская иммунология

Расширенный поиск

Стерильное воспаление, кросспрезентация, аутофагия и адаптивный иммунитет при иммуновоспалительных ревматических заболеваниях

https://doi.org/10.15789/1563-0625-SIC-2790

Аннотация

Доминирующими этиологическими факторами стерильного воспаления при иммуновоспалительных ревматических заболеваниях являются провоспалительные вне- и внутриклеточные DAMPs, генерирующиеся при системной прогрессирующей дезорганизации рыхлой волокнистой неоформленной соединительной ткани, регулируемой гибели клеток и некрозе клеток. Стерильное воспаление является многоступенчатым процессом, при котором индуцируется последовательность реакций, опосредованных лейкоцитами и резидентными клетками макрофагально-моноцитарного ряда, направленных на очищение очага воспаления от клеточного и тканевого детрита, с последующим восстановлением гомеостаза поврежденной ткани. Важная роль в этом процессе принадлежит трансэндотелиальной миграции лейкоцитов в очаг стерильного воспаления и формирование клеточного воспалительного инфильтрата. Ключевой особенностью указанных процессов является реактивность PRR-рецепторов и, как следствие PRR-DAMPs взаимодействий, последующий запуск молекулярноклеточных процессов, итогом которых является картина локальных и/или системных проявлений стерильного воспаления. Следствием PRR-DAMPs взаимодействий является активация врожденного иммунитета и запуск молекулярно-клеточных реакций, позволяющих отнести иммуновоспалительные ревматические заболевания к категории системных стерильных аутовоспалительных процессов. Генерализованность патофизиологических эффектов провоспалительных DAMPs и, соответственно, системность и полиорганность поражения тканей и внутренних органов при иммуновоспалительных ревматических заболеваниях обусловлено широкой распространенностью рецепторов к «сигналам опасности». В развитии DAMP-опосредованного стерильного воспаления важнейшее место занимает феномен кросс-презентации и аутофагия. Кросс-презентация обуславливает презентацию внеклеточных DAMPs из интернализованных белков с молекулами МНС класса I аутореактивным CD8+ цитотоксическим Т-лимфоцитам. Аутофагия обеспечивает процессинг внутриклеточных пептидных DAMPs, их загрузку на молекулы МНС класса II с последующей индукцией CD4+Т-клеточного адаптивного иммунного ответа. Важный вклад в указанные процессы вносят врожденные лимфоидные клетки. Модель функциональной сопряженности и взаимодополняемости ILCs и Th-CD4+Т-клеток расширило наши представления об иммунной регуляции, распространив активность врожденного и адаптивного иммунитета в область поддержания тканевого гомеостаза, морфогенеза, репарации, регенерации и воспаления. Следствием PRR-DAMP взаимодействий тканевых ILCs и последующего подключения клеточных пар ILC – Th-CD4+Т-клеток является прогрессирование системного стерильного воспаления. Представленные в настоящем обзоре материалы определяют перспективные молекулярные и клеточные мишени с целью регуляции и/или ингибирования активности стерильного воспаления при иммуновоспалительных ревматических заболеваниях.

Об авторе

М. З. Саидов
ФГБОУ ВО «Дагестанский государственный медицинский университет»
Россия

Саидов М.З. – д.м.н., профессор, заведующий кафедрой патологической физиологии

367000, Россия, Республика Дагестан, г. Махачкала, пл. Ленина, 1

Тел.: 8 (988) 300-90-45



Список литературы

1. Бернет Ф. Клеточная иммунология. М.: Мир, 1971 г. 541 с.

2. Воспаление. Руководство для врачей. Под ред. В.В. Струкова, В.С. Паукова. М.: Медицина, 1995. С. 219.

3. Потапнев М.П. Иммунные механизмы стерильного воспаления // Иммунология, 2015. Т. 36, № 5. С. 312-318.

4. Саидов М.З. DAMP-опосредованное воспаление и регулируемая гибель клеток при иммуновоспалительных ревматических заболеваниях // Медицинская иммунология, 2023. Т. 25, № 1. С. 7-38. doi: 10.15789/1563-0625-DMI-2557.

5. Саидов М.З. Аутофагия, апоптоз, некроптоз, пироптоз и нетоз в патогенезе иммуновоспалительных ревматических заболеваний» // Медицинская иммунология, 2022. Т. 24, № 4. С. 659-704. doi: 10.15789/1563-0625-AAN-2482.

6. Саидов М.З. Патогенетическое значение клеточного инфильтрата при иммуновоспалительных ревматических заболеваниях // Медицинская иммунология, 2021. Т. 23, № 6. С. 1239-1274. doi: 10.15789/1563-0625-PVO-2386.

7. Струков А.И., Бегларян А.Г. Патологическая анатомия и патогенез коллагеновых болезней. М.: Медгиз, 1963. 323 с.

8. Abdulahad D.A., Westra J., Bijzet J., Limburg P.C., Kallenberg C.G., Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res. Ther., 2011, Vol. 13, no. 3, R71. doi: 10.1186/ar3332.

9. Ahrens S., Zelenay S., Sancho D., Hanč P., Kjær S., Feest, C., Fletcher G., Durkin C., Postigo A., Skehel M., Batista F., Thompson B., Way M., Reis e Sousa C., Schulz O. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity, 2012, Vol. 36, no. 4, pp. 635-645.

10. Almeida F.F., Belz G.T. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection. Mucosal Immunol., 2016, Vol. 9, no. 5, pp. 1103-1112.

11. Ayres-Sander C.E., Lauridsen H., Maier C.L., Sava P., Pober J.S., Gonzalez A.L. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One, 2013, Vol. 8, no. 3, e60025. doi: 10.1371/journal.pone.0060025.

12. Babelova A., Moreth K., Tsalastra-Greul W., Zeng-Brouwers J., Eickelberg O., Young M.F., Bruckner P., Pfeischifter J., Schaefer R.M., Grone H-J., Schaefer L. Biglycan, a danger signal that activates the NLRP3 inflammasome via Toll-like and P2X receptors. J. Biol. Chem., 2009, Vol. 284, no. 36, pp. 24035-24048.

13. Bertheloot D., Latz E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol., 2017, Vol. 14, no. 1, pp. 43-64.

14. Binder R. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol., 2014, Vol. 193, no. 12, pp. 5765-5771.

15. Blander J.M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol., 2018, Vol. 36, no. 1, pp. 717-753.

16. Block H., Herter J.M., Rossaint J., Stadtmann A., Kliche S., Lowel C.A., Zarbock A. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J. Exp. Med., 2012, Vol. 209, no. 2, pp. 407-421.

17. Boniface K., Passeron T., Seneschal J., Tulic M.K. Targeting innate immunity to combat cutaneous stress: the vitiligo perspective. Front. Immunol., 2021, Vol. 12, 613056. doi: 10.3389/fimmu.2021.613056.

18. Bouchon A., Facchetti F., Weigand M.A., Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature, 2001, Vol. 410, no. 6832, pp. 1103-1107.

19. Brenu E. W., Staines D.R., Tajouri L., Huth T., Ashton K.J., Marshall-Gradisnik S.M. Heat shock proteins and regulatory T cells. Autoimmune Dis., 2013, Vol. 2013, 813256. doi: 10.1155/2013/813256.

20. Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, Vol. 16, no. 7, pp. 407-420.

21. Buckley C.D., Ross E.A., McGettrick H.M., Osborne C.E., Haworth O., Schmutz C., Stone P.C., Salmon M., Matharu N.M., Vohra R.K., Nash G.B., Rainger G.E. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol., 2006, Vol. 79, no. 2, pp. 303-311.

22. Caielli S., Athale S., Domic B., Murat E., Chandra M., Banchereau R., Baisch J., Phelps K., Clayton S., Gong M., Wright T., Punaro M., Palucka K., Guiducci C., Banchereau J., Pascual V. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med., 2016, Vol. 213, no. 5, pp. 697-713.

23. Carman C.V., Sage P.T., Sciuto T.E., de la Fuente M.A., Geha R.S., Ochs H.D., Dvorak H.F., Dvorak A.M., Springer T.A. Transcellular diapedesis is initiated by invasive podosomes. Immunity, 2007, Vol. 26, no. 6, pp. 784-797.

24. Cerezo A.L., Šumová, B., Prajzlerová K., Veigl D., Damgaard D., Nielsen C.H., Pavelka К., Vencovský J., Šenolt L. Calgizzarin (S100A11): a novel inflammatory mediator associated with disease activity of rheumatoid arthritis. Arthritis Res. Ther., 2017, Vol. 19, no. 1, 79. doi:10.1186/s13075-017-1288-y.

25. Chan T.Y., Yen C.L., Huang Y.F., Lo P.C., Nigrovic P.A., Cheng C.Y., Wang W.Z., Wu S.Y., Shieh C.C. Increased ILC3s associated with higher levels of IL-1beta aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur. J. Immunol., 2019, Vol. 49, no. 11, pp. 2063-2073.

26. Chen C.J., Kono H., Golenbock D., Reed G., Akira S., Rock K.L. Identification of a key pathway required for the sterile inflammatory responsetriggered by dying cells. Nat. Med., 2007, Vol. 13, no. 7, pp. 851-856.

27. Chen C.J., Shi Y., Hearn A., Fitzgerald K., Golenbock D., Reed G., Akira S., Rock K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, Vol. 116, no. 8, pp. 2262-2271.

28. Chen G.Y., Nunez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol., 2010, Vol. 10, no. 12, pp. 826-837.

29. Chiba S., Ikushima H., Ueki H., Yanai H., Kimura Y., Hangai S., Nishio J., Negishi H., Tamura T., Saijo S., Iwakura Y., Taniguchi T. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife, 2014, Vol. 3, e04177. doi: 10.7554/eLife.04177.

30. Colom B., Bodkin J.V., Beyrau M., Woodfin A., Ody C., Rourke C., Chavakis T., Brohi K., Imhof B., Nourshargh S. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity, 2015, Vol. 42, no. 6, pp. 1075-1086.

31. Comber J.D., Robinson T.M., Siciliano N.A., Snook A.E., Eisenlohr L.C. Functional macroautophagy induction by influenza A virus without a contribution to MHC-class II restricted presentation. J. Virol., 2011, Vol. 85, no. 13, pp. 6453-6463.

32. de Rivero Vaccari J.C., Brand F.J., Berti A.F., Alonso O.F., Bullock M.R., Vaccari J.P. Mincle signaling in the innate immune response after traumatic brain injury. J. Neurotrauma, 2005, Vol. 32, no. 4, pp. 228-236.

33. Dengjel J., Schoor O., Fischer R., Reich M., Kraus M., Muller M., Kreymborg K., Altenberend F., Brandenburg J., Kalbacher H., Brock R., Driessen C., Rammensee H.G., Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl Acad. Sci. USA., 2005, Vol. 102, no. 22, pp. 7922-7927.

34. de Oliveira S., Rosowski E.E., Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol., 2016, Vol. 16, no. 6, pp. 378-391.

35. Deppermann C., Kubes P. Start a fire, kill the bug: the role of platelets in inflammation and infection. Innate Immun., 2018, Vol. 24, no. 6, pp. 335-348.

36. di Virgilio F., dal Ben D., Sarti A.C., Giuliani A.L., Falzoni S. The P2X7 receptor in infection and inflammation. Immunity, 2017, Vol. 47, no. 1, pp. 15-31.

37. Duvvuri B., Pachman L.M., Morgan G., Khojah A.M., Klein-Gitelman M., Curran M.L., Doty S., Lood C. Neutrophil extracellular traps in tissue and periphery in juvenile dermatomyositis. Arthritis Rheumatol., 2020, Vol. 72, no. 2, pp. 348-358.

38. Eigenbrod T., Park J.H., Harder J., Iwakura Y., Nunez G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1α released from dying cells. J. Immunol., 2008, Vol. 181, no. 12, pp. 8194-8198.

39. Fayyaz A., Kurien B.T., Scofield R.H. Autoantibodies in Sjögren’s syndrome. Rheum. Dis. Clin. North Am., 2016, Vol. 42, no. 3, pp. 419-434.

40. Fehres C.M., Kalay H., Bruijns S.C., Musaafir S.A., Ambrosini M., Bloois L., Vliet S.J., Storm G., Garcia-Vallejo J.J., Kooyk Y. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. J. Control Release, 2015, Vol. 203, pp. 67-76.

41. Frangou E., Vassilopoulos D., Boletis J., Boumpas D.T. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun. Rev., 2019, Vol. 18, no. 8, pp. 751-760.

42. Fu, L., Han L., Xie C., Li W., Lin L., Pan S., Zhou Y., Li Z., Jin M., Zhang A. Identification of extracellular actin as a ligand for triggering receptor expressed on myeloid cells-1 signaling. Front. Immunol., 2017, Vol. 8, 917. doi: 10.3389/fimmu.2017.00917.

43. Gabay C., Lamacchia C., Palmer G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol., 2010, Vol. 6, no. 4, pp. 232-241.

44. Girbl T., Lenn T., Perez L., Rolas L., Barkaway A., Thiriot A., Fresno C.D., Lynam E., Hub E., Thelen M., Graham G., Alon R., Sancho D., Andrian U.H., Voisin M-B., Rot A., Nourshargh S. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity, 2018, Vol. 49, no. 6, pp. 1062-1076.

45. Goldstein R.S., Bruchfeld A., Yang L., Qureshi A.R., Gallowitsch-Puerta M., Patel N.B., Huston B.J.,

46. Chavan S., Rosas-Ballina M., Gregersen P.K., Czura C.J., Sloan R.P., Sama A.E., Tracey K.J. Cholinergic antiinflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol. Med., 2007, Vol. 13, no. 3-4, pp. 203-209.

47. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, Vol. 20, no. 2, pp. 95-112.

48. Gong Y., Koh D.R. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res., 2010, Vol. 339, no. 2, pp. 437-448.

49. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, Vol. 9, no. 8, pp. 857-865.

50. Hangai S., Ao T., Kimura Y., Matsuki K., Kawamura T., Negishi H., Nishio J., Kodama T., Taniguchi T., Yanai H. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc. Natl Acad. Sci. USA, 2016, Vol. 113, no. 14, pp. 3844-3849.

51. Harding S.M., Benti J.L., Irianto J., Discher D.E., Minn A.J., Greenberg R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 2017, Vol. 548, no. 7668, pp. 466-470.

52. Hardison S.E., Brown G.D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol., 2012, Vol. 13, no. 9, pp. 817-822.

53. Hepworth M.R., Monticelli L.A., Fung T.C., Ziegler C.G.K., Grunberg S., Sinha R., Mantegazza A.R., Ma H., Crawford A., Angelosanto J.M., Wherry E.J., Koni P.A., Bushman F.D., Elson C.O., Eberl G., Artis D., Sonnenberg G.F. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, Vol. 498, no. 7452, pp. 113-117.

54. Hu B., Jin C., Li H-B., Tong J., Ouyang X., Cetinbas N.M., Zhu S., Strowig T., Lam F.C., Zhao C., Henao-Mejia J., Yimaz O., Fitzgerald K.A., Eisenbarth S.C., Elinav E., Flavell R.A. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science, 2016, Vol. 354, no. 6313, pp. 765-768.

55. Huang Q.Q., Sobkoviak R., Jockheck-Clark A.R., Shi B., Mandelin A.M., Tak P.P., Haines G.K., Nicchitta C.V., Pope R.M. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J. Immunol., 2009, Vol. 182, no. 8, pp. 4965-4973.

56. Huber-Lang M., Lambris J.D., Ward P.A. Innate immune responses to trauma. Nat. Immunol., 2018, Vol. 19, no. 4, pp. 327-341.

57. Hudson B.I., Lippman M.E. Targeting RAGE signaling in inflammatory disease. Annu. Rev. Med., 2018, Vol. 69, pp. 349-364.

58. Huysamen C., Willment J.A., Dennehy K.M., Brown G.D. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J. Biol. Chem., 2008, Vol. 283, no. 24, pp. 16693-16701.

59. Ireland J.M., Unanue E.R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med., 2011, Vol. 208, no. 13, pp. 2625-2632.

60. Janeway C.A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol., 1989, Vol. 54, Pt 1, pp. 1-13.

61. Jay T.R., von Saucken V. E., Landreth G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener., 2017, Vol. 12, no. 1, 56. doi: 10.1186/s13024-017-0197-5.

62. Jenkins S.J., Rucker I.D., Cook P.C., Jones L.H., Finkelman F.D., Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science, 2011, Vol. 332, no. 6035, pp. 1284-1288.

63. Joffre O.P., Segura E., Savina A., Amigorena S. Cross-presentation by dendritic cells. Nat. Rev. Immunol., 2012, Vol. 12, no. 8, pp. 557-569.

64. Jog N.R., Blanco I., Lee I., Putterman C., Caricchio R. Urinary high-mobility group box-1 associates specifically with lupus nephritis class V. Lupus, 2016, Vol. 25, no. 14, pp. 1551-1557.

65. Jones H.R., Robb C.T., Perretti M., Rossi A.G. The role of neutrophils in inflammation resolution. Semin. Immunol., 2016, Vol. 28, no. 2, pp. 137-145.

66. Jongbloed S.L., Kassianos A.J., McDonald K.J., Clark G.J., Ju X., Angel C.E., Chen C.J., Dunbar P.R., Wadley R.B., Jeet V., Vulink J.A., Hart D.N., Radford K.J. Human CD141+(BDCA-3)+dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med., 2010, Vol. 207, no. 6, pp. 1247-1260.

67. Karmakar M., Katsnelson M.A., Dubyak G.R. Neutrophil P2X7 receptors mediate NLRP3 inflammasomedependent IL-1beta secretion in response to ATP. Nat. Commun., 2016, Vol. 7, 10555. doi: org/10.1038/ncomms10555.

68. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol., 2014, Vol. 5, 461. doi: 10.3389/fimmu.2014.004.

69. Khan N., Vidyarthi A., Pahari S., Negi S., Aqdas M., Nadeem S., Agnihotri T., Agrewala J.N. Signaling through NOD-2 and TLR-4 bolsters the T cell priming capability of dendritic cells by inducing autophagy. Sci. Rep., 2016, Vol. 6, 1908. doi: 10.1038/srep19084.

70. Klemperer P. The concept of collagen diseases. Am. J. Pathol, 1950, Vol. XXVI, no. 4, pp. 505-519.

71. Komada T., Chung H., Lau A., Platnich J.M., Beck P.L., Benediktsson H., Duff H.J., Jenne C.N., Muruve D.A. Macrophage uptake of necrotic cell DNA activates the Aim2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol., 2018, Vol. 29, no. 4, pp. 1165-1181.

72. Kong D., Shen Y., Liu G., Zuo S., Ji Y., Lu A., Nakamura M., Lazarus M., Stratakis C.A., Breyer R.M., Yu Y. PKA regulatory II alpha subunit is essential for PGD2-mediated resolution of inflammation. J. Exp. Med., 2016, Vol. 213, no. 10, pp. 2209-2226.

73. Kono H., Rock K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol., 2008, Vol. 8, no. 4, pp. 279-289.

74. Kono H., Karmarkar D., Iwakura Y., Rock K.L. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J. Immunol., 2010, Vol. 184, no. 8, pp. 4470-4478.

75. Kovalenko A., Kim J.C., Kang T.B., Rajput A., Bogdanov K., Dittrich-Breiholz O., Kracht M., Brenner O., Wallach D. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med., 2009, Vol. 206, no. 10, pp. 2161-2177.

76. Land W.G. Role of damage-associated molecular patterns in light of modern environmental research: a tautological approach. Int. J. Environ. Res., 2020, Vol. 14, no. 5, pp. 583-604.

77. Land W.G. Use of DAMPs and SAMPs as therapeutic targets or therapeutics: a note of caution. Mol. Diagn. Ther., 2020, Vol. 24, no. 3, pp. 251-262.

78. Lee G.S., Subramanian N., Kim A., Aksentijevech I., Goldbach-Mansky R., Sacks D.B., Germain R.N., Kastner D.L., Chae J.J., The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, Vol. 492, no. 7427, pp. 123-127.

79. Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. Getting to the site of inflammation:the leukocyte adhesion cascade updated. Nat. Rev. Immunol., 2007, Vol. 7, no. 9, pp. 678-689.

80. Li Y., Xu P., Xu K., Cai Y.-S., Sun M., Yang L., Sun J., Lu S. Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression. Molecular and Cellular Biochemistry, 2016, Vol. 420, no. 1-2, pp. 161-170.

81. Lindahl H., Olsson T. Interleukin-22 Influences the Th1/Th17 Axis. Front. Immunol., 2021, Vol. 12, 618110. doi: 10.3389/fimmu.2021.618110.

82. Lopalco G., Cantarini L., Vitale A., Iannone F., Anelli M.G., Andreozzi L., Lapadula G., Galeazzi M., Rigante D. Interleukin-1 as a common denominator from autoinflammatory to autoimmune disorders: premises, perils, and perspectives. Mediators Inflamm., 2015, Vol. 2015, 194864. doi: 10.1155/2015/194864.

83. Lotfi R., Herzog G.I., DeMarco R.A., Beer-Stolz D., Lee J.J., Rubartelli A., Schrezenmeier H., Lotze M.T. Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J. Immunol., 2009, Vol. 183, no. 8, pp. 5023-5031.

84. Lukens J.R., Gross J.M., Kanneganti T.D. IL-1family cytokines trigger sterile inflammatory disease. Front. Immunol., 2012, Vol. 3, 315. doi: 10.3389/fimmu.2012.00315.

85. Ma F., Li B., Liu S., Lyer S., Yu Y., Wu A., Cheng G. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J. Immunol., 2015, Vol. 194, no. 4, pp. 1545-1554.

86. Maggi L., Montaini G., Mazzoni A., Rossettini B., Capone M., Rossi M.C., Santarlasci V., Liotta F., Rossi O., Gallo O., de Palma R., Maggi E., Cosmi L., Romagnani S., Annunziato F. Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production. J. Allergy Clin. Immunol., 2017, Vol. 139, no. 3, pp. 964-976.e4.

87. Mangan M.S.J., Olhava E.J., Roush W.R., Seidel H.M., Glick G.D., Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, Vol. 17, no. 8, pp. 588-606.

88. Martin C.A., Carsons S.E., Kowalewski R., Bernstein D., Valentino M., Santiago-Schwarz F. Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J. Immunol., 2003, Vol. 171, no. 11, pp. 5736-5742.

89. Matha L., Romera-Hernandez M., Steer C.A., Yin Y.H., Orangi M., Shim H., Chang C., Rossi F.M., Takei F. Migration of lung resident group 2 innate lymphoid cells link allergic lung inflammation and liver immunity. Front Immunol., 2021, Vol. 12, 679509. doi: 10.3389/fimmu.2021.679509.

90. Matsuzawa-Ishimoto Y., Hwang S., Cadwell K. Autophagy and inflammation. Annu. Rev. Immunol., 2018, Vol. 36, pp.73-101.

91. Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol., 1994, Vol. 12, pp. 991-1045.

92. Mázló A., Jenei V., Burai S., Molnár T., Bácsi A., Koncz G. Types of necroinflammation, the effect of cell death modalities on sterile inflammation. Cell Death Dis., 2022, Vol. 13, 423. doi: 10.1038/s41419-022-04883-w.

93. McDonald B., Kubes P. Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation. J. Mol. Med., 2011, Vol. 89, no. 11, pp. 1079-1088.

94. McDonald B., Pittman K., Menezes G.B., Hirota S.A., Slaba I., Waterhouse C.C.M., Beck P.L., Muruve D.A., Kubes, P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science, 2010, Vol. 3306, no. 6002, pp. 362-366.

95. Melo-Gonzalez F., Kammoun H., Evren E., Dutton E.E., Papadopoulou M., Bradford B.M., Tanes C., Fardus-Reid F., Swan J.R., Bittinger K., Mabbott N.A., Vallance B.A., Willinger T., Withers D.R., Hepworth M.R. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J. Exp. Med., 2019, Vol. 216, no. 4, pp.728-742.

96. Miles K., Clarke D.J., Lu W., Sibinska Z., Beaumont P.E., Davidson D.J., Barr T.A., Campopiano D.J., Gray M. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of α-defensins. J. Immunol., 2009, Vol. 183, no. 3, pp. 2122-2132.

97. Mintern J.D., Macri C., Chin W.J., Panozza S.E., Segura E., Patterson N.L., Zeller P., Bourges D., Bedoui S., McMillan P.J., Idris A., Nowell C.J., Brown A., Radford J., Johnston A.P., Villadangos J.A. Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy, 2015, Vol. 11, no. 6, pp. 906-917.

98. Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell, 2010, Vol. 140, no. 3, pp. 313-326.

99. Moreth K., Iozzo R.V., Schaefer L. Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle, 2012, Vol. 11, no. 11, pp. 2084-2091.

100. Mortha A., Chudnovskiy A., Hashimoto D., Bogunovic M., Spencer S., Belkaid Y., Merad M. Microbiotadependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 2014, Vol. 343, pp. 1439-1440.

101. Mueller D.L., Jenkins M.K., Schwartz R.H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol., 1989, Vol. 7, pp. 445-480.

102. Münz C. Antigen processing for MHC class II presentation via autophagy. Front. Immunol., 2012, Vol. 3, 9. doi: 10.3389/fimmu.2012.00009.

103. Murshid A., Gong J., Calderwood S.K. The role of heat shock proteins in antigen cross presentation. Front. Immunol., 2012, Vol. 3, 63. doi: 10.3389/fimmu.2012.00063.

104. Nastase M.V., Young M.F., Schaefer L. Biglycan. A multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem., 2012, Vol. 60, no. 12, pp. 963-975.

105. Nieswandt B., Watson S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood, 2003, Vol. 102, no. 2, pp. 449-461.

106. Nourshargh S., Alon R. Leukocyte migration into in flamed tissues. Immunity, 2014, Vol. 41, no. 5, pp. 694-707.

107. Nourshargh S., Hordijk P.L., Sixt M. Breaching multiple barriers:leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol., 2010, Vol. 11, no. 5, pp. 366-378.

108. Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M.P., Germain R.N., Sacks D. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science, 2008, Vol. 321, no. 5891, pp. 970-974.

109. Pober J.S., Sessa W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol., 2007, Vol. 7, no. 10, pp. 803-815.

110. Powell D., Tauzin S., Hind L.E., Deng Q., Beebe D.J., Huttenlocher A. Chemokine signaling and the regulation of bidirectional leukocyte migration in interstitial tissues. Cell Rep., 2017, Vol. 19, no. 8, pp. 1572-1585.

111. Ravindran R., Khan N., Nakaya H.I., Li S., Loebbermann J., Maddur M.S., Park Y., Jones D.P., Chappert P., Davoust J., Weiss D.S., Virgin H.W., Ron D., Pulendran B. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science, 2014, Vol. 343, no. 6168, pp. 313-317.

112. Rock K.L., Latz E., Ontiveros F., Kono H. The sterile inflammatory response. Annu. Rev. Immunol., 2010, Vol. 28, pp. 321-342.

113. Roers A., Hiller B. Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity, 2016, Vol. 44, no. 4, pp. 739-754.

114. Roh J.S., Sohn D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw., 2018, Vol. 18, no. 4, e27. doi: 10.4110/in.2018.18.e27.

115. Savio L.E.B., Mello P.A., da Silva C.G., Coutinho-Silva R. The P2X7 receptor in inflammatory diseases: angel or demon? Front. Pharmacol., 2018, Vol. 9, 52. doi: 10.3389/fphar.2018.00052.

116. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem., 2014, Vol. 289, no. 51, pp. 35237-35245.

117. Schaefer L., Babelova A., Kiss E., Hausser H.J., Baliova M., Krzyzankova M., Marsche G., Young M.F., Mihalik D., Götte M., Malle E., Schaefer R.M., Gröne H.J. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest., 2005, Vol. 115, no. 8, pp. 2223-2233.

118. Schierbeck H., Lundbäck P., Palmblad K., Klevenvall L., Erlandsson-Harris H., Andersson U., Ottosson L. Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol. Med., 2011, Vol. 17, no. 9-10, pp. 1039-1044.

119. Schmid D., Pypaert M., Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity, 2007, Vol. 26, no. 1, pp. 79-92.

120. Shlomovitz I., Erlich Z., Speir M., Zargarian S., Baram N., Engler M., Edry-Botzer L., Munitz A., Croker B.A., Gerlic M. Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J., 2019, Vol. 286. no. 3, pp. 507-522.

121. Shulman Z., Shinder V., Klein E., Grabovsky V., Yeger O., Geron E., Montresor A., Bolomini-Vittoti M., Feigelson S.W., Kirchhausen T., Laudanna C., Shakhar G., Alon R. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity, 2009, Vol. 30, no. 3, pp. 384-396.

122. Sohn D.H., Rhodes C., Onuma K., Zhao X., Sharpe O., Gazitt T., Shiao R., Fert-Bober J., Cheng D., Lahey L.J., Wong H.H., van Eyk J., Robinson W.H., Sokolove J. Local Joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheumatol., 2015, Vol. 67, no. 11, pp. 2877-2887.

123. Sokolove J., Zhao X., Chandra P.E., Robinson W.H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum., 2010, Vol. 63, no. 1, pp. 53-62.

124. Stark K., Eckart A., Haidari S., Tirniceriu A., Lorenz M., von Bruhl, M-L., Gartner F., Khandoga A.G., Legate K.R., Pless R., Hepper I., Lauber K., Walzog B., Massberg S. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol., 2013, Vol. 14, no. 1, pp. 41-51.

125. Sun X.H., Liu Y., Han Y., Wang J. Expression and significance of high-mobility group protein B1 (HMGB1) and the receptor for advanced glycation end-product (RAGE) in knee osteoarthritis. Med. Sci. Monit., 2016, Vol. 22, pp. 2105-2112. 125. Tammaro A., Derive M., Gibot S., Leemans J.C., Florquin S., Dessing M.C. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol. Ther., 2017, Vol. 177, pp. 81-95.

126. Tang D., Kang R., Coyne C.B., Zeh H.J., Lotze M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev., 2012, Vol. 249, no. 1, pp. 158-175.

127. Tian J., Avalos A.M., Mao S-Y., Chen B., Senthil K., Wu H., Parroche P., Drabic S., Golenbock D., Sirois C., Hua J., An L.L., Audoly L., LaRosa G., Bierhaus A., Naworth P., Marsshak-Rothstein A., Crow M.K., Fitzgerald A. K., Latz E., Kiener P.A., Coyle A.J. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol., 2007, Vol. 8, no. 5, pp. 487-496.

128. Tullett K.M., Rojas I.L., Minoda Y., Tan P.S., Zhang J-G., Smith C., Khanna R., Shortman K., Caminschi I., Lahoud M.H., Radford K.J. Targeting CLEC9A delivers antigen to human CD141(+) DC for CD4(+) and CD8(+)T cell recognition. JCI Insight, 2016, Vol. 1, no. 7, e87102. doi: 10.1172/jci.insight.87102.

129. Uhl M., Kepp O., Jusforgues-Saklani H., Vicencio J.M., Kroemer G., Albert M.L. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ., 2009, Vol. 16, no. 7, pp. 991-1005.

130. Vénéreau E., Ceriotti C., Bianchi M.E. DAMPs from cell death to new life. Front. Immunol., 2015, Vol. 6, 422. doi: 10.3389/fimmu.2015.00422.

131. Vivier E., Artis D., Colonna M., Diefenbach,A., Di Santo J.P., Eberl G., Koyasu S., Locksley R.M., McKenzie A.N., Mebius R.E., Powrie F., Spits H. Innate Lymphoid Cells: 10 Years On. Cell, 2018, Vol. 174, no. 5, pp. 1054-1066.

132. Voisin M.B., Nourshargh S. Neutrophil transmigration: emergence of an adhesive cascade within venular walls. J. Innate Immun., 2013, Vol. 5, no. 4, pp. 336-347.

133. Voisin M.B., Pröbstl D., Nourshargh S. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol., 2010, Vol. 176, no. 1, pp. 482-495.

134. Vulcano M., Dusi S., Lissandrini D., Badolato R., Mazzi P., Riboldi E., Borroni E., Calleri A., Donini M., Plebani A., Notarangelo L., Musso T., Sozzani S. Toll receptor-mediated regulation of NADPH oxidase in human dendriticcells. J. Immunol., 2004, Vol. 173, no. 9, pp. 5749-5756.

135. Wang J., Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell, 2016, Vol. 165, no. 3, pp. 668-678.

136. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res., 2018, Vol. 371, no. 3, pp. 531-539.

137. Wang Y., Ning X., Gao P., Wu S., Sha M., Lv M., Zhou X., Gao J., Fang R., Meng G., Su X., Jiang Z. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity, 2017, Vol. 46, no. 3, pp. 393-404.

138. Weidberg H., Shpilka T., Shvets E., Abada A., Shimron, F., Elazar Z. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell, 2011, Vol. 20, no. 4, pp. 444-454.

139. Weiss E., Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol., 2018, Vol. 39, no. 10, pp. 815-829.

140. Woodfin A., Voisin M.B., Beyrau M., Colom B., Caille D., Diapouli F.-M., Nash G.B., Chavakis T., Albelda S.M., Rainger G., Meda P., Imhof B.A., Nourshargh S. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol., 2011, Vol. 12, no. 8, pp. 761-769.

141. Wu D., Zeng Y., Fan Y., Wu J., Mulatibieke T., Ni J., Yu G., Wan R., Wang X., Hu G. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep., 2016, Vol. 6, 20545. doi: 10.1038/srep20545.

142. Xiahou Z., Wang X., Shen J., Zhu X., Xu F., Hu R., Guo D., Li H., Tian Y., Liu Y., Liang H. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nat. Commun., 2017, Vol. 8, 950. doi: 10.1038/s41467-017-00930-9.

143. Yamamoto S., Shimizu S., Kiyonaka S., Takahashi N., Wajima T., Hara Y., Negoro T., Hiroi T., Kiuchi Y., Okada T., Kaneko S., Lange I., Fleig A., Penner R., Nishi M., Takeshima H., Mori Y. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med., 2008, Vol. 14, no. 7, pp. 738-747.

144. Yatim N., Cullen S., Albert M.L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol., 2017, Vol. 17, no. 4, pp. 262-275.

145. Ye R.D., Sun L. Emerging functions of serum amyloid A in inflammation. J. Leukoc. Biol., 2015, Vol. 98, no. 6, pp. 923-929.

146. Zarbock A, Singbartl K., Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet–neutrophil aggregation. J. Clin. Investig., 2006, Vol. 116, no. 12, pp. 3211-3219.

147. Zeng-Brouwers J., Pandey S., Trebicka J., Wygrecka M., Schaefer L. Communications via the small leucinerich proteoglycans: molecular specificity in inflammation and autoimmune diseases. J. Histochem. Cytochem., 2020, Vol. 68, no. 12, pp. 887-906.

148. Zhang J.-G., Czabotar P.E., Policheni A.N., Caminschi I., San Wan S., Kitsoulis S., Kirsteen M., Tullett K.M., Robin A.Y., Brammananth R., van Delft M.F., Lu J., O’Reilly L.A., Josefsson E.C., Kile B.T., Chin W.J., Mintern J.G., Olshina M.A., Wong W., Baum J., Wright M.D., Huang D.S., Mohandas N., Coppel R.L., Colman P.M., Nicola N.A., Shortman K., Lahoud M.H. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity, 2012, Vol. 36, no. 4, pp. 646-657.

149. Zhong Z., Zhai Y., Liang S., Mori Y., Han R., Sutterwala F.S., Qiao L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, Vol. 4, 1611. doi: 10.1038/ncomms2608.

150. Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu J. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 2016, Vol. 21, no. 1, pp. 96-109.

151. Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol., 2020, Vol. 15, pp. 493-518.


Дополнительные файлы

Рецензия

Для цитирования:


Саидов М.З. Стерильное воспаление, кросспрезентация, аутофагия и адаптивный иммунитет при иммуновоспалительных ревматических заболеваниях. Медицинская иммунология. 2024;26(3):465-502. https://doi.org/10.15789/1563-0625-SIC-2790

For citation:


Saidov M.Z. Sterile inflammation, cross-presentation, autophagy and adaptive immunity in immunoinflammatory rheumatic diseases. Medical Immunology (Russia). 2024;26(3):465-502. (In Russ.) https://doi.org/10.15789/1563-0625-SIC-2790

Просмотров: 595


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)