1. Alexander A.A., Maniar A., Cummings J.S., Hebbeler A.M., Schulze D.H., Gastman B.R., Pauza C.D., Strome S.E., Chapoval A.I. Isopentenyl pyrophosphate-activated CD56+ γδT lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin. Cancer Res., 2008, Vol. 14, no. 13, pp. 4232-4240.
2. Braza M., Klein B. Anti-tumor immunotherapy with Vγ9Vδ2 T lymphocytes: from the bench to the bedside. Br. J. Haematol., 2013, Vol. 160, pp. 123-132.
3. Cai Y., Xue F., Fleming C., Yang J., Ding C., Ma Y., Liu M., Zhang H.G., Zheng J., Xiong N., Yan J. Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6 T17 cells in health and inflammation. Nat. Commun., 2014, Vol. 5, 3986. https://doi.org/10.1038/ncomms4986.
4. Chakraborty P., Karmakar T., Arora N., Mukherjee G. Immune and genomic signatures in oral (head and neck) cancer. Heliyon, 2018, Vol. 4, no. 10, e00880. https://doi.org/10.1016/j.heliyon.2018.e00880.
5. Davey M.S., Willcox C.R., Baker A.T., Hunter S., Willcox B.E. Recasting human Vd1 lymphocytes in an adaptive role. Trends Immunol., 2018, Vol. 39, no. 6, pp. 446-459.
6. Dunne M.R., Mangan B.A., Madrigal-Estebas L., Doherty D.G. Preferential Th1 cytokine profile of phosphoantigen stimulated human Vγ9Vδ2 T cells. Mediators Inflamm., 2010, Vol. 2010, 704941. https://doi.org/10.1155/2010/704941.
7. Forster M.D., Devlin M.-J. Immune checkpoint inhibition in head and neck cancer. Front. Oncol., 2018, Vol. 8, 310. https://doi.org/10.3389/fonc.2018.00310.
8. García-Marín R., Reda S., Riobello C., Cabal V.N., Suárez-Fernández L., Vivanco B., Álvarez-Marcos C., López F., Llorente J.L., Hermsen M.A. Prognostic and therapeutic implications of immune classification by CD8+ tumor-infiltrating lymphocytes and PD-L1 expression in sinonasal squamous cell carcinoma. Int. J. Mol. Sci., 2021, Vol. 22, no. 13, 6926. https://doi.org/10.3390/ijms22136926.
9. Gober H.J., Kistowska M., Angman L., Jenö P., Mori L., De Libero G. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med., 2003, Vol. 197, no. 2, pp. 163-168.
10. Gogoi D., Chilunkar S. Targeting gamma delta T cells for cancer immunotherapy: bench to bedside. Indian J. Med. Res., 2013, Vol. 138, pp. 174-180.
11. Gutkin D.W. and Shurin M.R. Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunol. Immunother., 2014, Vol. 63, pp. 45-57.
12. Hongo T., Yamamoto H., Jiromaru R., Yasumatsu R., Kuga R., Nozaki Y., Hashimoto K., Matsuo M., Wakasaki T., Tamae A., Taguchi K., Toh S., Masuda M., Nakagawa T., Oda Y. PD-L1 expression, tumor-infiltrating lymphocytes, mismatch repair deficiency, EGFR alteration and HPV infection in sinonasal squamous cell carcinoma. Mod. Pathol., 2021, Vol. 34, no. 11, pp. 1966-1978.
13. Lafont V., Sanchez F., Laprevotte E., Michaud A., Gros L., Eliaou J.-F. and Bonnefoy N. Plasticity of γδТ cells: impact on the anti-tumor response. Front. Immunol., 2014, Vol. 5, 622. https://doi.org/10.3389/fimmu.2014.00622.
14. Lechner A., Schlößer H., Rothschild S.I., Thelen M., Reuter S., Zentis P., Shimabukuro-Vornhagen A., Theurich S., Wennhold K., Garcia-Marquez M., Tharun L., Quaas A., Schauss A., Isensee J., Hucho T., Huebbers C., von Bergwelt-Baildon M., Beutner D. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget, 2017, Vol. 8, pp. 44418-44433.
15. Lo Presti E., Pizzolato G., Corsale A.M., Caccamo N., Sireci G., Dieli F. and Meraviglia S. γδТ cells and tumor microenvironment: from immunosurveillance to tumor evasion. Front. Immunol., 2018, Vol. 9, 1395. https://doi.org/10.3389/fimmu.2018.01395.
16. Nussbaumer O., Koslowski M. The emerging role of γδТ cells in cancer immunotherapy. IOTECH, 2019, Vol. 1, pp. 3-10.
17. O’Melia M.J., Rohner N.A., Manspeaker M.P., Francis D.M., Kissick H.T. and Thomas S.N. Quality of CD8+ T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Sci. Adv., 2020, Vol. 6, no. 50, eabd7134. https://doi.org/10.1126/sciadv.abd7134.
18. Popadyuk V.I., Korshunova I.A., Babichenko I.I. Diagnostika novoobrazovanij polosti nosa i okolonosovyh pazuh. Bulletin of Otorhinolaryngology, 2015, Vol. 80, no. 1, pp. 72-74. (In Russ.).
19. Raverdeau M., Cunningham S., Harmon C., Lynch L. γδ T cells in cancer: a small population of lymphocytes with big implications. Clin. Transl. Immunol., 2019, Vol. 8, e1080. https://doi.org/10.1002/cti2.1080.
20. Rincon-Orozco B., Kunzmann V., Wrobel P., Kabelitz D., Steinle A., Herrmann T. Activation of Vγ9Vδ2 T cells by NKG2D. J. Immunol., 2005, Vol. 175, no. 4, pp. 2144-2151. https://doi.org/10.4049/jimmunol.175.4.2144.
21. Sabbione F., Gabelloni M.L., Ernst G., Gori M.S., Salamone G., Oleastro M., Trevani A., Geffner J., Jancic C.C. Neutrophils suppress gamma delta T-cell function. Eur. J. Immunol., 2014, Vol. 44, pp. 819-830.
22. Schoenfeld J.D. Immunity in head and neck cancer. Cancer Immunol. Res., 2015, Vol. 3, no. 1, pp. 12-17.
23. Serre K., Silva-Santos B. Molecular mechanisms of differentiation of murine pro-inflammatory γδ T cell subsets. Front. Immunol., 2013, Vol. 4, 431. https://doi.org/10.3389/fimmu.2013.00431.
24. Sheridan B.S., Romagnoli P.A., Pham Q.M., Fu H.H., Alonzo F. 3rd, Schubert W.D., Freitag N.E., Lefrançois L. Gamma delta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity, 2013, Vol. 39, no. 1, pp. 184-195.
25. van Acker H.H., Anguille S., van Tendeloo V.F., Lion E. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy. Oncoimmunology, 2015, Vol. 4, e1021538. https://doi.org/10.1080/2162402X.2015.1021538.
26. Vantourout P., Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol., 2013, Vol. 13, no. 2, pp. 88-100.
27. Wistuba-Hamprecht K., Martens A., Haehnel K., Geukes Foppen M., Yuan J., Postow M.A., Wong P., Romano E., Khammari A., Dreno B., Capone M., Ascierto P.A., Demuth I., Steinhagen-Thiessen E., Larbi A., Schilling B., Schadendorf D., Wolchok J.D., Blank C.U., Pawelec G., Garbe C., Weide B. Proportions of blood-borne Vδ1+ and Vδ2+ T cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur. J. Cancer, 2016, Vol. 64, pp. 116-126.
28. Wu D., Wu P., Qiu F., Wei Q. and Huang J. Human γδТ-cell subsets and their involvement in tumor immunity. Cell Mol. Immunol., 2017, Vol. 14, pp. 245-253.
29. Wu D., Wu P., Wu X., Ye J., Wang Z., Zhao S., Ni C., Hu G., Xu J., Han Y., Zhang T., Qiu F., Yan J., Huang J. Ex vivo expanded human circulating Vdelta1 gamma delta T cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology, 2015, Vol. 4, no. 3, e992749. https://doi.org/10.4161/2162402X.2014.992749.
30. Yazdanifar M., Barbarito G., Bertaina A., Airoldi I. γδ T cells: the ideal tool for cancer immunotherapy. Cells, 2020. Vol. 9, no. 5, 1305. https://doi.org/10.3390/cells90513055.
31. Yin Y., Mitson-Salazar A., Prussin C. Detection of intracellular cytokines by flow cytometry. Curr. Protoc. Immunol., 2015, Vol. 110, pp. 6.24.1-6.24.18.
32. Zhao Y., Niu C., Cui J. Camma-delta (γδ) T cells: friend or foe in cancer development? J. Transl. Med., 2018, Vol. 16, no. 3, pp. 122-135.
33. Zou C., Zhao P., Xiao Z., Han X., Fu F. and Fu L. γδТ cells in cancer immunotherapy. Oncotarget, 2017, Vol. 8, pp. 8900-8909.