INFLUENCE OF INDUCED INFLAMMATION UPON COLLAGEN METABOLISM OF UNSTABLE ATHEROSCLEROTIC PLAQUE IN MURINE MODEL
https://doi.org/10.15789/1563-0625-2008-6-507-512
Abstract
Abstract. Mediators of inflammation may play a sufficient role in destabilization of atherosclerotic plaque, disturbing the balance between collagen formation and its degradation in fibrotic capsule. Using a transgenic murine model, the effects of induced inflammation upon expression of factors determining posttranslational modification and degradation of collagen, i.e., prolyl-4-hydroxylase, matrix metalloproteinases-2, -9 (MMP-2, -9), and tissue inhibitor of metalloproteinases (TIMP-1) were evaluated. It has been shown that, under significant increase of interferon-γ and interleukin-1β, the synthesis of prolyl-4-hydroxylase and MMP - 9 is decreased, whereas expression of collagen, MMP-2 and TIMP-1 genes was not changed. (Med. Immunol., vol. 10, N 6, pp 507-512).
About the Authors
E. V. ShlyakhtoRussian Federation
N. A. Gavrisheva
Russian Federation
O. A. Ovchinnikova
Russian Federation
G. K. Hansson
Sweden
References
1. Нагорнев В.А., Яковлева О.А., Рабинович В.С. Атерогенез и воспаление // Мед. акад. журн. – 2001. – № 1. – C. 139-150.
2. Van der Wal A.C., Becker A.E., Van der Loos C.M., Das P.K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology // Circulation. – 1994. – Vol. 89. – P. 36-44.
3. Frostegard J., Ulfgren A.K., Nyberg P., Hedin U., Swedenborg J., Andersson U., Hansson G.K. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines // Atherosclerosis. – 1999. – Vol. 145. – P. 33-43.
4. Libby P., Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets // Nat. Med. – 2002. – Vol. 8. – P. 1257 - 1262.
5. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease // N. Engl. J. Med. – 2005. – Vol. 352. – P. 1685-1695.
6. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture // Physiol. Rev. – 2005. – Vol. 85. – P. 1-31.
7. McCullagh K.G., Duance V.C., Bishop K.A. The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta // J. Pathol. – 1980. – Vol. 130. – P. 45-55.
8. Gelse K., Poschl E., Aigner T. Collagens – structure, function, and biosynthesis // Adv. Drug Deliv. Rev. – 2003. – Vol. 55. – P. 1531-1546.
9. Hansson G.K., Holm J., Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque // Am. J. Pathol. – 1989. – Vol. 135. – P. 169-175.
10. Hansson G.K., Hellstrand M., Rymo L., Rubbia L., Gabbiani G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells // J. Exp. Med. – 1989. – Vol. 170. – P. 1595-1608.
11. Amento E.P., Ehsani N., Palmer H., Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells // Arterioscler Thromb. – 1991. – Vol. 11. – P. 1223-1230.
12. Schonbeck U., Mach F., Sukhova G.K., Murphy C., Bonnefoy J.Y., Fabunmi R.P., Libby P. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? // Circ. Res. – 1997. – Vol. 81. – P. 448-454.
13. Galis Z.S., Sukhova G.K., Lark M.W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques // J. Clin. Invest. – 1994. – Vol. 94. – P. 2493-2503.
14. Li Z., Li L., Zielke H.R., Cheng L., Xiao R., Crow M.T., Stetler-Stevenson W.G., Froehlich J., Lakatta E.G. Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions // Am. J. Pathol. – 1996. – Vol. 148. – P. 121-128.
15. Loftus I.M., Naylor A.R., Goodall S., Crowther M., Jones L., Bell P.R., Thompson M.M. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption // Stroke. – 2000. – Vol. 31. – P. 40-47.
16. Molloy K.J., Thompson M.M., Schwalbe E.C., Bell P.R., Naylor A.R., Loftus I.M. Elevation in plasma MMP-9 following carotid endarterectomy is associated with particulate cerebral embolisation // Eur. J. Vasc Endovasc Surg. – 2004. – Vol. 27. – P. 409-413.
17. Formato M., Farina M., Spirito R., Maggioni M., Guarino A., Cherchi G.M., Biglioli P., Edelstein C., Scanu A.M. Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries // Arterioscler Thromb Vasc Biol. – 2004. – Vol. 24. – P. 129-135.
18. Cheng M., Hashmi S., Mao X., Zeng Q.T. Relationships of adiponectin and matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio with coronary plaque morphology in patients with acute coronary syndrome // Can. J. Cardiol. – 2008. – Vol. 24. – P. 385-390.
19. Ye S. Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome // Cardiovasc. Res. – 2006. – Vol. 69. – P. 636-645.
20. Johnson J., George S., Newby A., Jackson C. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries // Proc. Natl. Acad. Sci USA. – 2005. – Vol. 102. – P. 15575-80.
21. Robertson A.K., Rudling M., Zhou X., Gorelik L., Flavell R.A., Hansson G.K. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis // J. Clin. Invest. – 2003. – Vol. 112. – P. 1342-1350.
22. Шляхто Е.В., Гавришева Н.А., Овчинникова О.А., Робертсон А.К., Ханссон Г.К. Состояние межклеточного матрикса в атеросклеротической бляшке в условиях воспаления // Бюллетень НИИ Кардиологии им. В.А. Алмазова. – 2005. – № 3. – P. 29.
23. Reddick R.L., Zhang S.H., Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression // Arterioscler Thromb. – 1994. – Vol. 14. – P. 141-147.
24. Radzikowski C. Protection of animal research subjects // Sci. Eng. Ethics. – 2006. – Vol. 12. – P. 103-110.
25. Tricarico C., Pinzani P., Bianchi S., Paglierani M., Distante V., Pazzagli M., Bustin S.A., Orlando C. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies // Anal. Biochem. – 2002. – Vol. 309. – P. 293-300.
26. Myllyharju J., Kivirikko K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms // Trends Genet. – 2004. – Vol. 20. – P. 33-43.
27. Stultz C.M. Localized unfolding of collagen explains collagenase cleavage near imino-poor sites // J. Mol. Biol. – 2002. – Vol. 319. – P. 997 - 1003.
28. Libby P., Aikawa M. Vitamin C, collagen, and cracks in the plaque // Circulation. – 2002. – Vol. 105. – P. 1396-1398.
29. Koslowski R., Seidel D., Kuhlisch E., Knoch K.P. Evidence for the involvement of TGF-beta and PDGF in the regulation of prolyl 4-hydroxylase and lysyloxidase in cultured rat lung fibroblasts // Exp. Toxicol Pathol. – 2003. – Vol. 55. – P. 257-264.
30. Saren P., Welgus H.G., Kovanen P.T. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages // J. Immunol. – 1996. – Vol. 157. – P. 4159-4165.
Review
For citations:
Shlyakhto E.V., Gavrisheva N.A., Ovchinnikova O.A., Hansson G.K. INFLUENCE OF INDUCED INFLAMMATION UPON COLLAGEN METABOLISM OF UNSTABLE ATHEROSCLEROTIC PLAQUE IN MURINE MODEL. Medical Immunology (Russia). 2008;10(6):507-512. (In Russ.) https://doi.org/10.15789/1563-0625-2008-6-507-512