Interactions between immunosuppressor neutrophiles, innate and adaptive immunity indexes in the patients with subclinical atherosclerosis
https://doi.org/10.15789/1563-0625-IBI-2463
Abstract
The last fifteen years have been marked by rapid progress in the study of neutrophils. The discovery of transcriptional plasticity of neutrophils, their phenotypic and functional heterogeneity contributed to launching active interdisciplinary studies on the role of neutrophils in various chronic inflammatory diseases. Increased systemic circulation of immunosuppressive neutrophils can be observed not only in sepsis, but also in chronic systemic inflammation, which, along with disorders of lipid metabolism, is the major mechanism of atherosclerosis development and progression. Monocytes, dendritic cells, Tlymphocytes and neutrophils are key participants and modulators of inflammation in atherosclerosis. Potential significance of immunosuppressive neutrophils in atherogenesis and regulation of inflammatory response in atherosclerosis has not been currently established. However, taking into account their possible effects upon T lymphocytes and innate immunity cells, the study of immunosuppressive neutrophils seems promising in the context of atherosclerosis and atherosclerotic cardiovascular diseases. The purpose of this study was to evaluate relationship between the numbers of circulating immunosuppressive neutrophils and subpopulations of T cells and monocytes in the patients with subclinical atherosclerosis. The study enrolled patients aged 40-64 years with subclinical atherosclerosis of peripheral arteries. Subpopulations of neutrophils, lymphocytes and monocytes were phenotyped by flow cytometry using “Navios 6/2” (Beckman Coulter). 133 patients, 65 (48.8%) males and 68 (51.2%) females were included into the study. Correlation analysis showed that increased number of circulating CD16hiCD11bloCD62Lbr neutrophils was associated with increased number of regulatory T lymphocytes. The patients with subclinical atherosclerosis and absolute numbers of circulating immunosuppressive neutrophils within the first quartile (<136 cells/μL) had a statistically significantly lower number of regulatory T lymphocytes compared with patients in the 2-4 quartiles. An increase in immunosuppressive neutrophils was associated with decreased number of classical monocytes expressing TLR4 (r = -0.335; p = 0.004), and a decrease in TLR2 surface expression intensity (r = -0.268; p = 0.023) on the non-classical monocytes. In patients with subclinical atherosclerosis of 40-64 years old, an increase in immunosuppressive CD16hiCD11bloCD62Lbr neutrophils was associated with increase in regulatory T lymphocytes and nonclassical monocytes, as well as decrease in classic monocytes expressing TLR4, and lower intensity of TLR2 expression on the non-classical monocytes.
About the Authors
I. I. DolgushiRussian Federation
Dolgushin Ilya I., PhD, MD (Medicine), Professor, Honored Scientist of Russia, Full Member, Russian Academy of Sciences, Head, Department of Microbiology, Virology, Immunology, Director, Research Institute of Immunology, President
Chelyabinsk
V. V. Genkel
Russian Federation
Genkel Vadim V., PhD (Medicine), Associate Professor, Department of Propedeutics of Internal Diseases
454092, Chelyabinsk, Vorovsky str., 64
I. L. Baturina
Russian Federation
Baturina Irina L., PhD (Medicine), Senior Research Associate, Research Institute of Immunology, South Ural State Medical University
Chelyabinsk
A. Yu. Savochkina
Russian Federation
Savochkina Albina Yu., PhD, MD (Medicine), Professor, Department of Clinical Laboratory Diagnostics, Main Research Associate, Research Institute of Immunology
Chelyabinsk
A. A. Minasova
Russian Federation
Minasova Anna A., PhD (Biology), Associate Professor, Department of Microbiology, Virology and Immunology
Chelyabinsk
K. V. Nikushkina
Russian Federation
Nikushkina Karina V., PhD (Medicine), Leading Research Associate, Research Institute of Immunology
Chelyabinsk
L. R. Pykhova
Russian Federation
Pykhova Lyubov R., Senior Lecturer, Department of Microbiology, Virology and Immunology
Chelyabinsk
A. S. Kuznetcova
Russian Federation
Kuznetsova Alla S., PhD (Medicine), Associate Professor, Department of Hospital Therapy
Chelyabinsk
I. I. Shaposhnik
Russian Federation
Shaposhnik Igor I., PhD, MD (Medicine), Professor, Head, Department of Propedeutics of Internal Diseases
Chelyabinsk
References
1. Dolgushin I.I. Neutrophil granulocytes: new faces of old acquaintances. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2019, Vol. 18, no. 1, pp. 30-37. (In Russ.)
2. Kuznetsova A.S., Dolgushina A.I., Savochkina A.Yu., Sumerkina V.A., Nikushkina K.V., Emelyanova N.B., Khaidukova I.V. The functional activity of neutrophils in patients with atherosclerotic stenosis of the celiac trunk. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2017, Vol. 11, no. 1, pp. 35-41. (In Russ.)
3. Kukharchuk V.V., Ezhov M.V., Sergienko I.V., Arabidze G.G., Bubnova M.G., Balakhonova T.V., Gurevich V.S., Kachkovsky M.A., Konovalov G.A., Konstantinov V.O., Malyshev P.P., Pokrovsky S.N., Sokolov A.A., Sumarokov A.B., Gornyakova N.B., Obrezan A.G., Shaposhnik I.I. Diagnosis and correction of lipid metabolism disorders to prevent and treat atherosclerosis. russian recommendations, VII revision. Ateroskleroz i dislipidemii = Atherosclerosis and Dyslipidemia, 2020, Vol. 38, no. 1, pp. 7-40. (In Russ.)
4. Osikov M.V., Boyko M.S., Simonyan E.V., Ushakova V.A. Immunotropic effects of vitamin D3 in original rectal suppositories in experimental ulcerative colitis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2021, Vol. 23, no. 3, pp. 497-508. (In Russ.) doi: 10.15789/1563-0625-IEO-2176.
5. Baardman J., Lutgens E. Regulatory T Cell metabolism in atherosclerosis. Metabolites, 2020, Vol. 10, no. 7, 279. doi: 10.3390/metabo10070279.
6. Bonacina F., Martini E., Svecla M., Nour J., Cremonesi M., Beretta G., Moregola A., Pellegatta F., Zampoleri V., Catapano A.L., Kallikourdis M., Norata G.D. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression. Cardiovasc. Res., 2021, Vol. 117, no. 9, pp. 2069-2082.
7. Drifte G., Dunn-Siegrist I., Tissières P., Pugin J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med., 2013, Vol. 41, no. 3, pp. 820-832.
8. Faget J., Peters S., Quantin X., Meylan E., Bonnefoy N. Neutrophils in the era of immune checkpoint blockade. J. Immunother. Cancer, 2021, Vol. 9, no. 7, e002242. doi: 10.1136/jitc-2020-002242.
9. Genkel V., Dolgushin I., Baturina I., Savochkina A., Kuznetsova A., Pykhova L., Shaposhnik I. Associations between hypertriglyceridemia and circulating neutrophil subpopulation in patients with dyslipidemia. Int. J. Inflam., 2021, Vol. 2021, 6695468. doi: 10.1155/2021/6695468.
10. Grieshaber-Bouyer R., Radtke F.A., Cunin P., Stifano G., Levescot A., Vijaykumar B., Nelson-Maney N., Blaustein R.B., Monach P.A., Nigrovic P.A; ImmGen Consortium. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun., 2021, Vol. 12, no. 1, 2856. doi: 10.1038/s41467-021-22973-9.
11. Gwyer Findlay E. We need to talk about neutrophils. Immunology, 2021, Vol. 164, no. 4, pp. 655-656.
12. Hedrick C.C., Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol., 2021. Online ahead of print. doi: 10.1038/s41577-021-00571-6.
13. Hong L.Z., Xue Q., Shao H. Inflammatory markers related to innate and adaptive immunity in atherosclerosis: implications for disease prediction and prospective therapeutics. J. Inflamm. Res., 2021, Vol. 14, pp. 379-392.
14. Huang R., Hu Z., Chen X., Cao Y., Li H., Zhang H., Li Y., Liang L., Feng Y., Wang Y., Su W., Kong Z., Melgiri N.D., Jiang L., Li X., Du J., Chen Y. The transcription factor SUB1 is a master regulator of the macrophage TLR response in atherosclerosis. Adv. Sci. (Weinh), 2021, Vol. 8, no. 19, e2004162. doi: 10.1002/advs.202004162.
15. Kapellos T.S., Bonaguro L., Gemünd I., Reusch N., Saglam A., Hinkley E.R., Schultze J.L. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol., 2019, Vol. 10, pp. 2035. doi: 10.3389/fimmu.2019.02035.
16. Klopf J., Brostjan C., Eilenberg W., Neumayer C. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int. J. Mol. Sci., 2021, Vol. 22, no. 2, 559. doi: 10.3390/ijms22020559.
17. Kvedaraite E. Neutrophil-T cell crosstalk in inflammatory bowel disease. Immunology, 2021, Vol. 164, no. 4, pp. 657-664.
18. Li Y., Wang W., Yang F., Xu Y., Feng C., Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun. Signal., 2019, Vol. 17, no. 1, 147. doi: 10.1186/s12964-019-0471-y.
19. Liu Z., Jiang Y., Li Y., Wang J., Fan L., Scott M.J., Xiao G., Li S., Billiar T.R., Wilson M.A., Fan J. TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation. J. Immunol., 2013, Vol. 191, no. 2, pp. 857-864.
20. Lok L.S.C., Clatworthy M.R. Neutrophils in secondary lymphoid organs. Immunology, 2021, Vol. 164, no. 4, pp. 677-688.
21. Minns D., Smith K.J., Findlay E.G. Orchestration of adaptive T cell responses by neutrophil granule contents. Mediators Inflamm., 2019, Vol. 10, 8968943. doi: 10.1155/2019/8968943.
22. Narasimhan P.B., Marcovecchio P., Hamers A.A.J., Hedrick C.C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol., 2019, Vol. 37, pp. 439-456.
23. Ożańska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no. 1, e12883. doi: 10.1111/sji.12883.
24. Pang B., Zhen Y., Hu C., Ma Z., Lin S., Yi H. Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clin. Sci. (Lond.), 2020, Vol. 134, no. 16, pp. 2209-2222.
25. Pillay J., Kamp VM., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest., 2012, Vol. 122, no. 1, pp. 327-336.
26. Pillay J., Ramakers B.P., Kamp V.M., Loi A.L., Lam S.W., Hietbrink F., Leenen L.P., Tool A.T., Pickkers P., Koenderman L. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J. Leukoc. Biol., 2010, Vol. 88, no. 1, pp. 211-220.
27. Robbins C.S., Chudnovskiy A., Rauch P.J., Figueiredo J.L., Iwamoto Y., Gorbatov R., Etzrodt M., Weber G.F., Ueno T., van Rooijen N., Mulligan-Kehoe M.J., Libby P., Nahrendorf M., Pittet M.J., Weissleder R., Swirski F.K. 2012. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation, 2012, Vol. 125, no. 2, pp. 364-374.
28. Robinson A., Han C.Z., Glass C.K., Pollard J.W. Monocyte regulation in homeostasis and malignancy. Trends Immunol., 2021, Vol. 42, no. 2, pp. 104-119.
29. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol., 2018, Vol. 20, no. 9, 113. doi: 10.3389/fphys.2018.00113
30. Roy P., Orecchioni M., Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol., 2021. Online ahead of print. doi: 10.1038/s41577-021-00584-1.
31. Sampath P., Moideen K., Ranganathan U.D., Bethunaickan R. Monocyte subsets: phenotypes and function in tuberculosis infection. Front. Immunol., 2018, Vol. 9, 1726. doi: 10.3389/fimmu.2018.01726.
32. Scapini P., Cassatella M.A. Social networking of human neutrophils within the immune system. Blood, 2014, Vol. 124, no. 5, pp. 710-719.
33. Schäfer S., Zernecke A. CD8+ T cells in atherosclerosis. Cells, 2020, Vol. 10, no. 1, 37. doi: 10.3390/cells10010037.
34. Silvestre-Roig C., Braster Q., Ortega-Gomez A., Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol., 2020, Vol. 17, no. 6, pp. 327-340.
35. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, Vol. 127, no. 18, pp. 2173-2181.
36. Sprynger M., Rigo F., Moonen M., Aboyans V., Edvardsen T., de Alcantara M.L., Brodmann M., Naka K.K., Kownator S., Simova I., Vlachopoulos C., Wautrecht J.C., Lancellotti P; EACVI Scientific Documents Committee. Focus on echovascular imaging assessment of arterial disease: complement to the ESC guidelines (PARTIM 1) in collaboration with the Working Group on Aorta and Peripheral Vascular Diseases. Eur. Heart J. Cardiovasc. Imaging, 2018, Vol. 19, no. 11, pp. 1195-1221.
37. Thomas G., Tacke R., Hedrick C.C., Hanna R.N. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol., 2015, Vol. 35, no. 6, pp. 1306-1316.
38. Torres-Ruiz J., Carrillo-Vazquez D.A., Padilla-Ortiz D.M., Vazquez-Rodriguez R., Nuñez-Alvarez C., Juarez-Vega G., Gomez-Martin D. TLR expression in peripheral monocyte subsets of patients with idiopathic inflammatory myopathies: association with clinical and immunological features. J. Transl. Med., 2020, Vol. 18, no. 1, 125. doi: 10.1186/s12967-020-02290-3.
39. Vlkova M., Chovancova Z., Nechvatalova J., Connelly A.N., Davis M.D., Slanina P., Travnickova L., Litzman M., Grymova T., Soucek P., Freiberger T., Litzman J., Hel Z. Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J. Immunol., 2019, Vol. 202, no. 1, pp. 93-104.
40. Willemsen L., de Winther M.P. Macrophage subsets in atherosclerosis as defined by single-cell technologies. J. Pathol., 2020, Vol. 250, no. 5, pp. 705-714.
41. Wu H., Zhen Y., Ma Z., Li H., Yu J., Xu Z.G., Wang X.Y., Yi H., Yang Y.G. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci. Transl. Med., 2016, Vol. 8, no. 331, 331ra40. doi: 10.1126/scitranslmed.aae0482.
42. Xu Y., Zhang Q., Zhao Y. The functional diversity of neutrophils and clustered polarization of immunity. Cell. Mol. Immunol., 2020, Vol. 17, no. 11, pp. 1212-1214.
Supplementary files
Review
For citations:
Dolgushi I.I., Genkel V.V., Baturina I.L., Savochkina A.Yu., Minasova A.A., Nikushkina K.V., Pykhova L.R., Kuznetcova A.S., Shaposhnik I.I. Interactions between immunosuppressor neutrophiles, innate and adaptive immunity indexes in the patients with subclinical atherosclerosis. Medical Immunology (Russia). 2022;24(2):283-294. (In Russ.) https://doi.org/10.15789/1563-0625-IBI-2463