Organ-specific LPS-induced inflammatory gene expression in adult Zebrafish
https://doi.org/10.15789/1563-0625-OSL-2357
Abstract
Systemic inflammation is known to be a key component of infection and non-infection diseases progression and may lead to multiorgan failure, persistent inflammation, immunosuppression, catabolism syndrome or even indolent death. This importance dictates the need for relevant in vivo models of inflammation to investigate the pathogenesis of numerous diseases and to perform drug screening. Danio rerio (zebrafish) became one of the most important models to explore biological processes in vivo. The aim of the study was to generate a lipopolysaccharide (LPS) model of systemic inflammation in vivo using zebrafish and to identify organspecific proinflammatory genes activity after intraperitoneal LPS infusion. We performed organ specific analysis of main proinflammatory genes expression in zebrafish after LPS stimulation. Comparing 18s, eef1a1l1, gapdh, and actb as potential housekeeping genes, we came to conclusion that eef1a1l1 with 99% effectiveness is the most promising for further normalization in this model. The genes activity was the most pronounced in the heart where the expression of IL6, CXCL8a, and CXCL18β was increased up to 100-fold. Moreover, the kidneys were the most involved in the inflammatory process since the highest number of analysed genes were up-regulated there: expression levels of CXCL18β, CXCL8a, IL1β, IL6, Mpeg1.2, and TNFa were significantly increased. This was probably related to the kidney activity as an immune and hematopoietic organ. The lowest reactivity was detected in the muscles. Immune reactions could be dose-dependent, for instance the infusion of 20 µg LPS led to decrease of expression of IFNy, Mpeg 1.2, and Mpeg 1.1 in the liver and to increase of Mpeg 1.2 expression in the kidney comparing with 10 µg dosage. Thus, due to the high degree of the similarity and other unique properties, Danio rerio has the advantage of being relevant model of inflammation. Our model demonstrated that the investigation of isolated zebrafish organs could be useful and informative for the investigation of inflammatory processes.
About the Authors
Yi. MaRussian Federation
PhD (Medicine), Research Associate, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Competing Interests:
No
A. V. Fedorov
Russian Federation
PhD (Biology), Head of Laboratory, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Competing Interests:
No
K. A. Kondratov
Russian Federation
PhD (Biology), Research Associate, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Competing Interests:
No
A. A. Knyazeva
Russian Federation
Research Associate, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Competing Interests:
No
M. L. Vasyutina
Russian Federation
Veterinarian, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Competing Interests:
No
A. S. Golovkin
Russian Federation
Alexey S. Golovkin - PhD, MD (Medicine), Head of the Group of Genetic Cell Engineering, Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.
197341, St. Petersburg, Akkuratova str., 2.
Phone: 7 (960) 240-98-96.
Competing Interests:
No
References
1. Al-Samadi A., Awad S.A., Tuomainen K., Zhao Y., Salem A., Parikka M., Salo T. Crosstalk between tongue carcinoma cells, extracellular vesicles, and immune cells in in vitro and in vivo models. Oncotarget, 2017, Vol. 8, no. 36, pp. 60123-60134.
2. Andersen C.L., Jensen J.L., 0rntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 2004, Vol. 64, no. 15, pp. 5245-5250.
3. Arnaout R., Ferrer T., Huisken J., Spitzer K., Stainier D.Y.R., Tristani-Firouzi M., Chi N.C. Zebrafish model for human long QT syndrome. Proc. Natl Acad. Sci. USA, 2007, Vol. 104, no. 27, pp. 11316-11321.
4. Asnani A., Peterson R.T. The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis. Model. Mech., 2014, Vol. 7, no. 7, pp. 763-767.
5. Banerjee S., Leptin M. Systemic response to ultraviolet radiation involves induction of leukocytic IL-1 в and inflammation in zebrafish. J. Immunol., 2014, Vol. 193, no. 3, pp. 1408-1415.
6. Barriuso J., Nagaraju R., Hurlstone A. Zebrafish in oncology. Aging (Albany NY), 2013, Vol. 7, no. 5, pp. 286-287.
7. Bates J.M., Akerlund J., Mittge E., Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe, 2007, Vol. 2, no. 6, pp. 371-382.
8. Benard E.L., Racz P.I., Rougeot J., Nezhinsky A.E., Verbeek F.J., Spaink H.P., Meijer A.H. Macrophage-expressed perforins Mpeg 1 and Mpeg 1.2 have an anti-bacterial function in zebrafish. J. Innate Immun., 2015, Vol. 7, no. 2, pp. 136-152.
9. Beutler B., Rietschel E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol., 2003, Vol. 3, no. 2, pp. 169-176.
10. Ciura S., Lattante S., Le Ber I., Latouche M., Tostivint H., Brice A., Kabashi E. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol., 2013, Vol. 74, no. 2, pp. 180-187.
11. Davidson A.J., Zon LI. The “definitive” (and 'primitive') guide to zebrafish hematopoiesis. Oncogene, 2004, Vol. 23, no. 43, pp. 7233-7246.
12. Dawid I.B. Developmental biology of zebrafish. Ann. N.Y. Acad. Sci., 2004, Vol. 1038, no. 4, pp. 88-93.
13. de Oliveira S., Reyes-Aldasoro C.C., Candel S., Renshaw S.A., Mulero V, Calado A. Cxc18 (IL-8) Mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J. Immunol., 2013, Vol. 190, no. 8, pp. 4349-4359.
14. Deng Q., Sarris M., Bennin D.A., Green J.M., Herbomel P., Huttenlocher A. Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish. J. Leukoc. Biol., 2013, Vol. 93, no. 5, pp. 761-769.
15. Elamm C., Fairweather D.L., Cooper L.T. Pathogenesis and diagnosis of myocarditis. Heart, 2012, Vol. 98, no. 11, pp. 835-840.
16. Forn-Cuni G., Varela M., Pereiro P, Novoa B., Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci. Rep., 2017, Vol. 7, 41905. doi: 10.1038/srep41905.
17. Francis Stuart S.D., de Jesus N.M., Lindsey M.L., Ripplinger C.M. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J. Mol. Cell. Cardiol., 2016, Vol. 91, pp. 114-122.
18. Gupta S., Gupta S. Inflammation, atherosclerosis and coronary artery disease. Med. Updat (Vol. 17, 2007), 2007, Vol. 352, no. 16, pp. 44-44.
19. Hendriks-Balk M.C., Michel M.C., Alewijnse A.E. Pitfalls in the normalization of real-time polymerase chain reaction data. Basic Res. Cardiol., 2007, Vol. 102, no. 3, pp. 195-197.
20. Herbomel P., Thisse B., Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 1999, Vol. 126, no. 17, pp. 3735-3745.
21. Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, Vol. 496, no. 7446, pp. 498-503.
22. Huang S., Xu M., Liu L., Yang J., Wang H., Wan C., Deng W., Tang, Q. Autophagy is involved in the protective effect of p21 on LPS-induced cardiac dysfunction. Cell Death Dis., 2020, Vol. 11, no. 7, pp. 1-15.
23. Hui S.P., Sheng D.Z., Sugimoto K., Gonzalez-Rajal A., Nakagawa S., Hesselson D., Kikuchi K. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell, 2017, Vol. 43, no. 6, pp. 659-672.e5.
24. Imazio M., Gaita F. Diagnosis and treatment of pericarditis. Heart, 2015, Vol. 101, no. 14, pp. 1159-1168.
25. Jiang J., Wu S., Wu C., An X., Cai L., Zhao X. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio). Fish Shellfish Immunol., 2014, Vol. 41, no. 2, pp. 493-500.
26. Kakihana Y., Ito T., Nakahara M., Yamaguchi K., Yasuda T. Sepsis-induced myocardial dysfunction: Pathophysiology and management. J. Intensive Care, 2016, Vol. 4, no. 1, 22. doi: 10.1186/s40560-016-0148-1.
27. Kettleborough R.N.W., Busch-Nentwich E.M., Harvey S.A., Dooley C.M., de Bruijn E., van Eeden F., Sealy I., White R.J., Herd C., Nijman I.J., Fenyes F., Mehroke S., Scahill C., Gibbons R., Wali N., Carruthers S., Hall A., Yen J., Cuppen E., Stemple D.L. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature, 2013, Vol. 496, no. 7446, pp. 494-497.
28. Kondratov K., Kurapeev D., Popov M., Sidorova M., Minasian S., Galagudza M., Kostareva A., Fedorov A. Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomol. Detect. Quantif., 2016, Vol. 8, pp. 9-14.
29. Lagos L., Tandberg J.I., Becker M.I., Winther-Larsen H.C. Immunomodulatory properties of Concholepas concholepas hemocyanin against francisellosis in a zebrafish model. Fish Shellfish Immunol., 2017, Vol. 67, pp. 571-574.
30. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol., 2017, Vol. 70, no. 18, pp. 2278-2289.
31. Lieschke G.J., Currie P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet., 2007, Vol. 8, no. 5, pp. 353-367.
32. MacRae C.A., Peterson R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov., 2015, Vol. 14, no. 10, pp. 721-731.
33. Masters S.L., Simon A., Aksentijevich I., Kastner D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol., 2009, Vol. 27, no. 1, pp. 621-668.
34. Mazmanian S.K., Cui H.L., Tzianabos A.O., Kasper D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell., 2005, Vol. 122, no. 1, pp. 107-118.
35. McCurley A.T., Callard G.V. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol., 2008, Vol. 9, no. 1, 102. doi: 10.1186/1471-2199-9-102.
36. Meeker N.D., Trede N.S. Immunology and zebrafish: spawning new models of human disease. Dev. Comp. Immunol., 2008, Vol. 32, no. 7, pp. 745-757.
37. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, Vol. 284, no. 4, pp. L566-L577.
38. Novoa B., Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. In: Advances in Experimental Medicine and Biology. 2012, pp. 253-275.
39. Oehlers S.H., Flores M.V., Okuda K.S., Hall C.J., Crosier K.E., Crosier P.S. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev. Dyn., 2011, Vol. 240, no. 1, pp. 288-298.
40. Parish R.C., Evans J.D. Inflammation in chronic heart failure. Ann. Pharmacother., 2008, Vol. 42, no. 7-8, pp. 1002-1016.
41. Renshaw S.A., Loynes C.A., Trushell D.M.I., Elworthy S., Ingham P.W., Whyte M.K.B. Atransgenic zebrafish model of neutrophilic inflammation. Blood, 2006, Vol. 108, no. 13, pp. 3976-3978.
42. Renshaw S.A., Trede N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis. Model. Mech., 2012, Vol. 5, no. 1, pp. 38-47.
43. Rhee C., Klompas M. New sepsis and septic shock definitions. Infect. Dis. Clin. North Am., 2017, Vol. 31, no. 3, pp. 397-413.
44. Russo R.C., Garcia C.C., Teixeira M.M., Amaral F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol., 2014, Vol. 10, no. 5, pp. 593-619.
45. Sepulcre M.P., Alcaraz-Perez F., Lopez-Munoz A., Roca F.J., Meseguer J., Cayuela M.L., Mulero V Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kB activation. J. Immunol., 2009, Vol. 182, no. 4, pp. 1836-1845.
46. Singer M., Deutschman C.S., Seymour C., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., Rubenfeld G.D., van der Poll T., Vincent J.L., Angus D.C. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, Vol. 315, no. 8, pp. 801-810.
47. Snider D.R., Clegg E.D. Alteration of phospholipids in porcine spermatozoa during in vivo uterus and oviduct incubation. J. Anim.Sci., 1975. Vol. 40, no. 2, pp. 269-274.
48. Solanas M., Moral R., Escrich E. Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal. Biochem., 2001, Vol. 288, no. 1, pp. 99-102.
49. Stockhammer O.W., Zakrzewska A., Hegedus Z., Spaink H.P, Meijer A.H. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to salmonella infection. J. Immunol., 2009, Vol. 182, no. 9, pp. 5641-5653.
50. Sullivan C., Charette J., Catchen J., Lage C.R., Giasson G., Postlethwait J.H., Millard P.J., Kim C.H. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J. Immunol., 2009, Vol. 183, no. 9, pp. 5896-5908.
51. Tandberg J., Oliver C., Lagos L., Gaarder M., Yanez A.J., Ropstad E., Winther-Larsen H.C. Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. Fish Shellfish Immunol., 2017, Vol. 67, pp. 189-198.
52. Tanino Y., Coombe D.R., Gill S.E., Kett W.C., Kajikawa O., Proudfoot A.E.I., Wells T.N.C., Parks W.C., Wight T.N., Martin T.R., Frevert C.W. Kinetics of chemokine-glycosaminoglycan interactions control neutrophil migration into the airspaces of the lungs. J. Immunol., 2010, Vol. 184, no. 5, pp. 2677-2685.
53. Trede N.S., Langenau D.M., Traver D., Look A.T., Zon L.I.. The use of zebrafish to understand immunity. Immunity, 2004, Vol. 20, no. 4, pp. 367-379.
54. van der Vaart M., van Soest J.J., Spaink H.P., Meijer A.H. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis. Model. Mech., 2013, Vol. 6, no. 3, pp. 841-854.
55. van Tassell B.W., Toldo S., Mezzaroma E., Abbate A. Targeting interleukin-1 in heart disease. Circulation, 2013, Vol. 128, no. 17, pp. 1910-1923.
56. van Tassell B.W., Raleigh J.M.V., Abbate A. Targeting Interleukin-1 in heart failure and inflammatory heart disease. Curr. Heart Fail. Rep., 2015, Vol. 12, no. 1, pp. 33-41.
57. Vandesompele J., de Preter K., Pattyn F., Poppe B., van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, Vol. 3, research0034.1. doi: 10.1186/gb-2002-3-7-research0034.
58. Watts S.A., Powell M., d'Abramo L.R. Fundamental approaches to the study of zebrafish nutrition. ILAR J., 2012, Vol. 53, no. 2, pp. 144-160.
59. Willett C.E., Cortes A., Zuasti A., Zapata A.G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn., 1999, Vol. 214, no. 4, pp. 323-336.
60. Williams M.A. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J. Infect. Dis., 1998, Vol. 178, no. 5, pp. 1421-1433.
61. Yan В., Han P, Pan L., Lu W., Xiong J., Zhang M., Li L., Wen Z. 11-1 в and reactive oxygen species differentially regulate neutrophil directional migration and basal random motility in a zebrafish injury-induced inflammation model. J. Immunol., 2014, Vol. 192, no. 12, pp. 5998-6008.
62. Yang L.L., Wang G.Q., Yang L.M., Huang Z.B., Zhang W.Q., Yu L.Z. Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs. Molecules, 2014, Vol. 19, no. 2, pp. 2390-2409.
63. Zang L., Maddison L.A., Chen W. Zebrafish as a model for obesity and diabetes. Front. Cell Dev. Biol., 2018, Vol. 6, 91. Doi: 10.3389/fcell.2018.00091.
64. Zapata A., Diez B., Cejalvo T., Gutierrez-de Frias C., Cortes A. Ontogeny of the immune system of fish. Fish Shellfish Immunol., 2006, Vol. 20, no. 2, pp. 126-136.
65. Zernecke A., Weber C. Chemokines in atherosclerosis: proceedings resumed. Arterioscler. Thromb. Vasc. Biol., 2014, Vol. 34, no. 4, pp. 742-750.
66. Zhang D., Tang J., Zhang J., Zhang D.L., Hu C.X. Responses of pro- and anti-inflammatory cytokines in zebrafish liver exposed to sublethal doses of aphanizomenon flosaquae DC-1 aphantoxins. Aquat. Toxicol., 2019, Vol. 215, 105269. doi: 10.1016/j.aquatox.2019.105269.
67. Zhang Y., Takagi N., Yuan B., Zhou Y., Si N., Wang H., Yang J., Wei X., Zhao H., Bian B. The protection of indolealkylamines from LPS-induced inflammation in zebrafish. J. Ethnopharmacol., 2019, Vol. 243, 112122. doi: 10.1016/j.jep.2019.112122.
Supplementary files
Review
For citations:
Ma Y., Fedorov A.V., Kondratov K.A., Knyazeva A.A., Vasyutina M.L., Golovkin A.S. Organ-specific LPS-induced inflammatory gene expression in adult Zebrafish. Medical Immunology (Russia). 2021;23(5):1069-1078. https://doi.org/10.15789/1563-0625-OSL-2357