Role of antimicrobial peptide DEFB126 mutation in pathogenesis of male idiopathic infertility
https://doi.org/10.15789/1563-0625-ROA-2342
Abstract
Male infertility is a multifactorial disease, and elucidation of etiopathogenetic mechanisms of its progression is a topical issue. High percentage of the “idiopathic infertility” diagnosis is largely cased by inability to establish etiology of decrease in reproductive spermatic function. Mutation of в-defensin DEFB126 gene is supposed to affect the fertilizing ability of spermatozoa at different levels: it may decrease their ability to migrate through the cervical mucus and reduce binding capacity to epithelial layer of upper female reproductive tract, and it may also increase susceptibility for infections of reproductive tract, due to impairment of local protective function of defensins. Thus, the aim of the present study was to examine possible role of rs11468374 gene polymorphism of the DEFB126 gene in pathogenesis of male idiopathic infertility. Patients and methods: The group of patient with decreased fertility included 54 male subjects, ages 34 to 42, with a control group of 19 ejaculate donors without acute or chronic disease aged 28 to 36. The indicators of sperm motility in the Moscow population were compared with individual levels of DEFB126 gene expression, as well as with estimated distribution frequency of rs11468374 alleles and genotypes among the subjects.
As compared with the control group, the infertile patients exhibited a more than seven-fold reduction of DEFB126 gene expression. Analysis of distribution frequency for alleles and genotypes rs11468374 polymorphic marker of the DEFB126 gene revealed that the mutant allele is detected almost twice as often in males with infertility, as compared with control group. No cases with the DEFB126 del/del genotype were found among the control group, in contrary to 16.1% in the group of patients. The patients with DEFB126 del/del genotype exhibited 5.2-fold reduction of sperm motility. Thus, the data obtained may be used to extend our knowledge on the pathogenetic mechanisms of male idiopathic infertility and to improve techniques for its diagnostics, as well as to provide personalized approach to the treatment of male reproductive disorders. The association between carriage of del mutant allele and decreased level of sperm motility suggests a role of this polymorphism in pathogenesis of male infertility. A general decrease in the level of DEFB126 gene expression in the patients affected by infertility also presumes a contribution of defensin 126 to pathogenesis of the disorder.
About the Authors
E. M. KhasanovaRussian Federation
Elena M. Khasanova - Assistant Professor, Department of Immunology, N. Pirogov Russian National Research Medical University.
117997, Moscow, Ostrovityanov str., 1.
Phone: 7 (916) 301-93-57.
Competing Interests:
No
L. V. Gankovskaya
Russian Federation
Lyudmila V. Gankovskaya - PhD, MD (Medicine), Professor, Head, Department of Immunology, N. Pirogov Russian National Research Medical University.
117997, Moscow, Ostrovityanov str., 1.
Competing Interests:
No
V. V. Burmakina
Russian Federation
Valeria V. Burmakina - Student, N. Pirogov Russian National Research Medical University.
117997, Moscow, Ostrovityanov str., 1.
Competing Interests:
No
References
1. Vinnik Yu.Yu., Borisov V.V. Diagnostics of men's infertility: current state of the problem. Klinicheskaya lektsiya. Consilium Medicum = Clinical Lecture. Consilium Medicum, 2017, Vol. 19, no. 7, pp. 65-69. (In Russ.)
2. Gamidov S.I., Iremashvili V.V., Tkhagapsoeva R.A. Male infertility: current state of the problem. Farmateka = Pharmateca, 2009, no. 9, pp. 12-17. (In Russ.)
3. Kovalchuk L.V., Gankovskaya L.V., Meshkova R.Ya. Clinical immunology and allergology with the basics of general immunology. Moscow: GEOTAR-Media, 2014. 640 р.
4. Konovalova M.V., Lutsenko G.V., Svirshchevskaya E.V., Zubareva A.A. Antimicrobial peptides in health and disease (review). Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2018, Vol. 54, no. 3, pp. 238-244. (In Russ.)
5. Lebedev G.S., Golubev N.A., Shaderkin I.A., Shaderkina V.A., Apolikhin O.I., Sivkov A.V., Komarova V.A. Male infertility in the Russian Federation: statistical data for 2000-2018. Eksperimentalnaya i klinicheskaya urologiya = Experimental and Clinical Urology, 2019, no. 4, pp. 4-12. (In Russ.)
6. Merkushova E.D., Khasanova E.M., Gankovskaya L.V. Hyperexpression of NLRP1 infl ammasome complex and cytokines IL-ip, IL-18 genes in bioptates of lesion and healhy skin of patients with psoriasis. Immunologiya = Immunologiya, 2021, Vol. 42, no. 1, pp. 58-65. (In Russ.)]
7. Musin Kh.G. Antimicrobial peptides — a potential replacement for traditional antibiotics. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2018, Vol. 8, no. 3, pp. 295-308. (In Russ.) doi: 10.15789/2220-7619-2018-3-295-308.
8. Rebrikov D.V., Samatov G.A., Trofimov D.Yu. Polymerase chain reaction “in real time ”. Moscow: BINOM. Laboratoriya znaniy, 2009. 215 p.
9. WHO laboratory manual for the examination and processing of human semen. 5th ed. World Health Organization. Moscow: Capital-Print, 2012. 292 p.
10. Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, Vol. 13, no. 1, 37. doi:10.1186/s12958-015-0032-1.
11. Akgul Y., Word R.A., Ensign L.M., Yamaguchi Y., Lydon J., Hanes J., Mahendroo M. Hyaluronan in cervical epithelia protects against infection-mediated preterm birth. J. Clin. Investig., 2014, Vol. 124, no. 12, pp. 5481-5489.
12. Ameri A., Machiah D.K., Tran T.T., Channell C., Crenshaw V., Fernstrom K., Khachidze M., Duncan A., Fuchs S., Howard T.E. Nonstop mutation in the factor (F)X gene of a severely haemorrhagic patient with complete absence of coagulation FX. Thromb. Haemost., 2007, Vol. 98, no. 6, pp. 1165-1169.
13. Beisswenger C., Bals R. Functions of antimicrobial peptides in host defense and immunity. Curr. Protein Pept. Sci., 2005, Vol. 6, no. 3, pp. 255-264.
14. Boroujeni P.B., Ebrahimian S., Abedini M., Chayjan M.R., Hassani M., Gourabi H., Meybodi A.M. The role of DEFB126 variation in male infertility and assisted reproductive technique outcome. Reprod. Biomed. Online, 2019, Vol. 39, no. 4, pp. 649-657.
15. Chatr-Aryamontri A., Angelini M., Garelli E., Tchernia G., Ramenghi U., Dianzani I., Loreni F. Nonsense-mediated and nonstop decay of ribosomal protein S19 mRNA in Diamond-Blackfan anemia. Hum. Mutat., 2004, Vol. 24, no. 6, pp. 526-533.
16. Diao H., Yu H.G., Sun Е, Zhang Y.L., Tanphaichitr N. Rat recombinant p-defensin 22 is a heparin-binding protein with antimicrobial activity. Asian J. Androl., 2011, Vol. 13, no. 2, pp. 305-311.
17. Dohle G.R., Colpi G.M., Hargreave T.B., Papp G.K., Jungwirth A., Weidner W. EAU guidelines on male infertility. Eur. Urol., 2015, Vol. 48, no. 5, pp. 703-711.
18. Dorin J.R., McHugh B., Cox S., Davidson D. Mammalian Antimicrobial Peptides; defensins and cathelicidins. Molecular Medical Microbiology - 2nd Edition. Elsevier. (ed). 2014, pp. 539-566.
19. Drake P.M., Nathan J.K., Stock C.M., Chang P.V., Muench M.O., Nakata D., Reader J.R., Gip P., Golden K.P., Weinhold B., Gerardy-Schahn R., Troy F.A., Bertozzi C.R. Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J. Immunol., 2008, Vol. 181, no. 10, pp. 6850-6858.
20. Gregory M.S. Innate immune system and the eye. In: Encyclopedia of the Eye. Academic Press, London, 2010, pp. 439-445.
21. Huang L., Leong S.S., Jiang R. Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl. Microbiol. Biotechnol., 2009, Vol. 84, no. 2, pp. 301-308.
22. Isken O., Maquat L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev., 2007, Vol. 21, no. 15, pp. 1833-3856.
23. Izadpanah A., Gallo R.L. Antimicrobial peptides. J. Am. Acad. Dermatol. 2005, Vol. 52, no. 3, pp. 381-390.
24. Liu H., Yu H., Gu Y., Xin A., Zhang Y., Diao H., Lin D. Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl. Microbiol. Biotechnol., 2013, Vol. 97, no. 8, pp. 3395-3408.
25. Matzuk M.M., Lamb D. The biology of infertility: research advances and clinical challenges. Nat. Med., 2008, Vol. 14, no. 11, pp. 1197-1213.
26. Pazgier M., Hooverb D.M., Yangc D., Lud W, Lubkowski J. Human в-defensins. Cell. Mol. Life Sci. 2006, Vol. 63, no. 11, pp. 1294-1313.
27. Rodriguez-Jimenez F.J., Krause A., Schulz S., Forssmann W.G., Conejo-Garcia J.R., Schreeb R. Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics, 2003, Vol. 81, no. 2, pp. 175-183.
28. Tecle E., Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev., 2015, Vol. 82, no. 9, pp. 635-650.
29. Tollner T.L., Bevins C.L., Cherr G.N. Multifunctional glycoprotein DEFB126--a curious story of defensin-clad spermatozoa. Nat. Rev. Urol., 2012, Vol. 9, no. 7, pp. 365-375.
30. Tollner T.L., Venners S.A., Hollox E.J., Yudin A.I., Liu X., Tang G., Xing H., Kays R.J., Lau T., Overstreet J.W., Xu X., Bevins C.L., Cherr G.N. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci. Transl. Med., 2011, Vol. 3, no. 92, 92ra65. doi: 10.1126/scitranslmed.3002289.
31. Tollner T.L., Yudin A.I., Treece C.A., Overstreet J.W., Cherr G.N. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum. Reprod., 2008, Vol. 23, no. 11, pp. 2523-2534.
32. Tulsiani D.R. Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: An overview of their potential role in sperm maturation. Mol. Cell. Endocrinol., 2006, Vol. 250, no. 1-2, pp. 58-65.
33. Yamaguchi Y., Nagase T., Makita R., Fukuhara S., Tomita T., Tominaga T. Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J. Immunol., 2002, Vol. 169, no. 5, pp. 2516-2523.
34. Yudin A.I., Tollner T.L., Treece C.A. Beta-defensin 22 is a major component of the mouse sperm glycocalyx. Reproduction, 2008, Vol. 136, no. 6, pp. 753-765.
35. Yudin A.I., Tollner T.L., Li M.W., Treece C.A., Overstreet J.W., Cherr G.N. ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol. Reprod., 2003, Vol. 69, no. 4, pp. 1118-1128.
36. Yudin A.I., Generao S.E., Tollner T.L., Treece C.A., Overstreet J.W., Cherr G.N. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol. Reprod., 2005, Vol. 73, no. 6, pp.1243-1252.
37. Yudin A.I., Treece C.A., Tollner T.L., Overstreet J.W., Cherr G.N. The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J. Membr. Biol., 2005, Vol. 207, no. 3, pp. 119-129.
Supplementary files
Review
For citations:
Khasanova E.M., Gankovskaya L.V., Burmakina V.V. Role of antimicrobial peptide DEFB126 mutation in pathogenesis of male idiopathic infertility. Medical Immunology (Russia). 2021;23(5):1115-1124. (In Russ.) https://doi.org/10.15789/1563-0625-ROA-2342