Safety and efficacy of RNA vaccines: State of the art
https://doi.org/10.15789/1563-0625-SAE-2320
Abstract
This review describes principles of action and the method of delivery of mRNA molecules into cells, as well as some of developed RNA vaccines and the results obtained in their study, though they have not been authorized for use yet. In addition, the review discusses efficacy and safety proved for RNA vaccines registered for COVID-19 prevention at the time of writing. The development, clinical trials and market launch of RNA vaccines for mass immunization in a few months can be considered one of the major breakthroughs in pharmacology over the past year. Despite of all seemingly indisputable advantages, none of RNA vaccines had reached Phase III of clinical trials since the moment of its discovery in 1993 until last year. The first experience of the successful use of mRNA vaccines was back in the 90s of the last century, when vaccination of mice with liposomes encoding an antigen-encoding mRNA was found to initiate specific immune response in mice. However, in these years, the method did not find application, due to the toxicity of lipids used. Subsequently, a large number of attempts have been made to develop vaccines against other viral infections, including Zika virus, Dengue virus, Ebola virus, cytomegalovirus, influenza virus and others. Despite the importance for preventing the spread of these diseases, the development of a vaccine preparation is a rather lengthy process, and final success is not guaranteed. However, the COVID-19 pandemic has become speeded the development of mRNA vaccines up.
At the time of writing the review, two mRNA-based vaccines have been registered only in the world, both, BNT162b2 and mRNA-1273, were against COVID-19. Their effectiveness and safety are still actively studied. Moreover, it took less than a year for new strains of SARS-CoV-2 to appear, and the efficiency of vaccines against them was found to be lower than against the reference pathogen variant. Considering that the three new strains of SARS-CoV-2, “British”, “African” and “Brazilian”, are rapidly spreading in the world, the first results of efficiency evaluation of vaccines against them have already been published. One may expect that, considering mutations in these strains, the BNT162b2 and mRNA-1273 vaccines will remain effective against the “British” strain, but their protective properties are greatly weakened against the “African” variant.
About the Authors
A. V. BlagovRussian Federation
Analyst, Department of Analysis and Prognosis of Biomedical Health Risks, Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency.
119435, Moscow, Pogodinskaya str., 10, bldg 1.
Competing Interests:
No
A. A. Bukaeva
Russian Federation
Analyst, Department of Analysis and Prognosis of Biomedical Health Risks, Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency.
119435, Moscow, Pogodinskaya str., 10, bldg 1.
Competing Interests:
No
V. V. Makarov
Russian Federation
Head, Department of Analysis and Prognosis of Biomedical Health Risks, Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency.
119435, Moscow, Pogodinskaya str., 10, bldg 1.
Competing Interests:
No
Z. V. Bochkaeva
Russian Federation
Zanda V. Bochkaeva - Analyst, Department of Analysis and Prognosis of Biomedical Health Risks, Center for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency.
119435, Moscow, Pogodinskaya str., 10, bldg 1.
Phone: 7 (495) 540-61-74 (acc. 1134).
Competing Interests:
No
References
1. Aldrich C., Leroux-Roels I., Huang K.B., Bica M.A., Loeliger E., Schoenborn-Kellenberger O., Walz L., Leroux-Roels G., von Sonnenburg F., Oostvogels L. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 2021, Vol. 39, no. 8, pp. 1310-1318.
2. Aliprantis A.O., Shaw C.A., Griffin P., Farinola N., Railkar R.A., Cao X., Liu W., Sachs J.R., Swenson C.J., Lee H., Cox K.S., Spellman D.S., Winstead C.J., Smolenov I., Lai E., Zaks T., Espeseth A.S., Panther L.A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adults. Hum. Vaccin. Immunother., 2020. doi: 10.1080/21645515.2020.1829899.
3. Amarante-Mendes G.P., Adjemian S., Branco L.M., Zanetti L.C., Weinlich R., Bortoluci K.R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol., 2018, Vol. 9, 2379. doi: 10.3389/fimmu.2018.02379.
4. Amezcua-Guerra L.M., Rojas-Velasco G., Brianza-Padilla M., Vazquez-Rangel A., Marquez-Velasco R., Baranda-Tovar F., Springall R., Gonzalez-Pacheco H., Juarez-Vicuna Y., Tavera-Alonso C., Sanchez-Munoz F., Hernandez-Salas M. Presence of antiphospholipid antibodies in COVID-19: case series study. Ann. Rheum. Dis., 2020. doi: 10.1136/annrheumdis-2020-218100.
5. Andries O., Mc Cafferty S., de Smedt S.C., Weiss R., Sanders N.N., Kitada T. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release, 2015, Vol. 217, pp. 337-344.
6. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S.A., Rouphael N., Creech C.B., McGettigan J., Khetan S., Segall N., Solis J., Brosz A., Fierro C., Schwartz H., Neuzil K., Corey L., Gilbert P., Janes H., Follmann D., Marovich M., Mascola J., Polakowski L., Ledgerwood J., Graham B.S., Bennett H., Pajon R., Knightly C., Leav B., Deng W., Zhou H., Han S., Ivarsson M., Miller J., Zaks T., COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med., 2021, Vol. 384, no. 5, pp. 403-416.
7. Bahl K., Senn J.J., Yuzhakov O., Bulychev A., Brito L.A., Hassett K.J., Laska M.E., Smith M., Almarsson O., Thompson J., Ribeiro A.M., Watson M., Zaks T., Ciaramella G. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther., 2017, Vol. 25, no. 6, pp. 1316-1327.
8. Ball R.L., Bajaj P., Whitehead K.A. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int. J. Nanomed., 2017, Vol. 12, pp. 305-315.
9. Blumenthal K.G., Freeman E.E., Saff R.R., Robinson L.B., Wolfson A.R., Foreman R.K., Hashimoto D., Banerji A., Li L., Anvari S., Shenoy E.S. Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2. N. Engl. J. Med., 2021. doi: 10.1056/NEJMc2102131.
10. Center for Disease Control and Prevention (CDC). Science Brief: Emerging SARS-CoV-2 variants. Updated January 28, 2021. Available at: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html.
11. Cullis P.R., Hope M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, Vol. 25, no. 7, pp. 1467-1475.
12. CureVac's mRNA-based vaccine candidate against COVID-19. Available at: https://www.curevac.com/en/covid-19.
13. Duthie M.S., van Hoeven N., MacMillen Z., Picone A., Mohamath R., Erasmus J., Hsu F.-C., Stinchcomb D.T., Reed S.G. Heterologous immunization with defined rna and subunit vaccines enhances T Cell responses that protect against leishmania donovani. Front. Immunol., 2018, Vol. 9, 2420. doi: 10.3389/fimmu.2018.02420.
14. Edwards D.K., Jasny E., Yoon H., Horscroft N., Schanen B., Geter T., Fotin-Mleczek M., Petsch B., Wittman V. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J. Transl. Med., 2017, Vol. 15, no. 1, 1. doi: 10.1186/s12967-016-1111-6.
15. Farzani A.T., Foldes K., Ergunay K., Gurdal H., Bastug A., Ozkul A. Immunological analysis of a CCHFV mRNA vaccine candidate in mouse models. Vaccines (Basel), 2019, Vol. 7, no. 3, 115. doi: 10.3390/vaccines7030115.
16. Goncalves G.A.R., Paiva R.M.A. Gene therapy: advances, challenges and perspectives. Einstein, 2017, Vol. 15, no. 3, pp. 369-375.
17. Guardo A.C., Joe P.T., Miralles L., Bargallo M.E., Mothe B., Krasniqi A., Heirman C., Garda F., '1 hielemans K., Brander C., Aerts J.L., Plana M., iHIVARNA consortium. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). AIDS, 2017, Vol. 31, no. 3, pp. 321-332.
18. Halpert G., Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun. Rev., 2020, Vol. 19, no. 12, 102695. doi: 10.1016/j.autrev.2020.102695.
19. John S., Yuzhakov O., Woods A., Deterling J., Hassett K., Shaw C.A., Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine, 2018, Vol. 36, no. 12, pp. 1689-1699.
20. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, Vol. 11, no. 5, pp. 373-384.
21. Kudla G., Lipinski L., Caffin F., Helwak A., Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol., 2006, Vol. 4, no. 6, e180. doi: 10.1371/journal.pbio.0040180.
22. Leal L., Guardo A.C., Moron-Lopez S., Salgado M., Mothe B., Heirman C., Pannus P., Vanham G., van den Ham H.J., Gruters R., Andeweg A., van Meirvenne S., Pich J., Arnaiz J.A., Gatell J.M., Brander C., Thielemans K., Martmez-Picado J., Plana M., Garda F., iHIVARNA consortium. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS, 2018, Vol. 32, no. 17, pp. 2533-2545.
23. Liu M.A. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel), 2019, Vol. 7, no. 2, 37. doi: 10.3390/vaccines7020037.
24. Martinon F., Krishnan S., Lenzen G., Magne R., Gomard E., Guillet J.G., Levy J.P., Meulien P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol., 1993, Vol. 23, no. 7, pp. 1719-1722.
25. Meyer M., Huang E., Yuzhakov O., Ramanathan P., Ciaramella G., Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect guinea pigs from ebola virus disease. J. Infect. Dis., 2018, Vol. 217, no. 3, pp. 451-455.
26. Moderna announces additional positive phase 1 data from Cytomegalovirus (CMV) vaccine (mRNA-1647) and first participant dosed in phase 2 study. Available at: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-additional-positive-phase-1-data.
27. Moderna Inc. Moderna COVID-19 Vaccine Update. January 25, 2021. Available at: https://investors.modernatx.com/static-files/1f770088-5909-457b-af99-7ff2454ba28a.
28. Pardi N., Hogan M.J., Pelc R.S., Muramatsu H., Andersen H., DeMaso C.R., Dowd K.A., Sutherland L.L., Scearce R.M., Parks R., Wagner W., Granados A., Greenhouse J., Walker M., Willis E., Yu J.-S., McGee C.E., Sempowski G.D., Mui B.L., Tam Y.K., Huang Y.-J., Vanlandingham D., Holmes V.M., Balachandran H., Sahu S., Lifton M., Higgs S., Hensley S.E., Madden T.D., Hope M.J., Kariko K., Santra S., Graham B.S., Lewis M.G., Pierson T.C., Haynes B.F., Weissman D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, Vol. 543, no. 7644, pp. 248-251.
29. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov, 2018, Vol. 17, no. 4, pp. 261-279.
30. Pardi N., LaBranche C.C., Ferrari G., Cain D.W, Tombacz I., Parks R.J., Muramatsu H., Mui B.L., Tam Y.K., Kariko K., Polacino P., Barbosa C.J., Madden T.D., Hope M.J., Haynes B.F., Montefiori D.C., Hu S.-L., Weissman D. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol. Ther. Nucleic Acids, 2019, Vol. 15, pp. 36-47.
31. Pardi N., Parkhouse K., Kirkpatrick E., McMahon M., Zost S.J., Mui B.L., Tam Y.K., Kariko K., Barbosa C.J., Madden T.D., Hope M.J., Krammer F., Hensley S.E., Weissman D. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun, 2018, Vol. 9, no. 1, 3361. doi: 10.1038/s41467-018-05482-0.
32. Park K.S., Sun X., Aikins M.E., Moon J.J. Non-viral COVID-19 vaccine delivery systems. Adv. Drug Deliv. Rev., 2021, Vol. 169, pp. 137-151.
33. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Perez Marc G., Moreira E.D., Zerbini C., Bailey R., Swanson K.A., Roychoudhury S., Koury K., Li P., Kalina W.V., Cooper D., Frenck R.W Jr, Hammitt L.L., Tureci O., Nell H., Schaefer A., Unal S., Tresnan D.B., Mather S., Dormitzer P.R., §ahin U., Jansen K.U., Gruber W.C., C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med., 2020, Vol. 383, no. 27, pp. 2603-2615.
34. Roers A., Hiller B., Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity, 2016, Vol. 44, no. 4, pp. 739-754.
35. Roth C., Cantaert T., Colas C., Prot M., Casademont I., Levillayer L., Thalmensi J., Langlade-Demoyen P., Gerke C., Bahl K., Ciaramella G., Simon-Loriere E., Sakuntabhai A. A modified mRNA Vaccine Targeting Immunodominant NS Epitopes Protects Against Dengue Virus Infection in HLA Class I Transgenic Mice. Front. Immunol., 2019, Vol. 10, 1424. doi: 10.3389/fimmu.2019.01424.
36. Samsa M.M., Dupuy L.C., Beard C.W., Six C.M., Schmaljohn C.S., Mason P.W., Geall A.J., Ulmer J.B., Yu D. Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice. Mol. Ther, 2019, Vol. 27, no. 4, pp. 850-865.
37. Sandbrink J.B., Shattock R.J. RNA Vaccines: A Suitable Platform for Tackling Emerging Pandemics? Front. Immunol., 2020, Vol. 11, 608460. doi: 10.3389/fimmu.2020.608460
38. Tada T., Dcosta B.M., Samanovic-Golden M., Herati R.S., Cornelius A., Mulligan M.J., Landau N.R. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv, 2021. doi: 10.1101/2021.02.05.430003
39. Tan X., Sun L., Chen J., Chen Z.J. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu. Rev. Microbiol., 2018, Vol. 72, pp. 447-478.
40. Torrecilla J., Rodnguez-Gascon A., Solims M.A., del Pozo-Rodriguez A. Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. Biomed Res. Int., 2014, Vol. 2014, 161794. doi: 10.1155/2014/161794
41. Tung M.L., Tan B., Cherian R., Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol. Adv. Pract., 2021, Vol. 5, no. 1, rkaa081. doi: 10.1093/rap/rkaa081.
42. U.S. Food and Drug Administration. Moderna COVID-19 vaccine. Briefing document. Vaccines and related biological products advisory committee meeting, December 17, 2020. Available at: https://www.fda.gov/media/144434/download.
43. U.S. Food and Drug Administration. Pfizer-BioNTech COVID-19 Vaccine. Briefing document. Vaccines and related biological products advisory committee meeting, December 10, 2020. Available at: https://www.fda.gov/media/144245/download.
44. Uthman I.W., Gharavi A.E. Viral infections and antiphospholipid antibodies. Semin. Arthritis Rheum, 2002, Vol. 31, no. 4, pp. 256-263.
45. Verma I.M., Somia N. Gene therapy - promises, problems and prospects. Nature, 1997, Vol. 389, no. 6648, pp. 239-242.
46. Vogel A.B., Lambert L., Kinnear E., Busse D., Erbar S., Reuter K.C., Wicke L., Perkovic M., Beissert T., Haas H., Reece S.T., Sahin U., Tregoning J.S. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther., 2018, Vol. 26, no. 2, pp. 446-455.
47. Walters A.A., Kinnear E., Shattock R.J., McDonald J.U., Caproni L.J., Porter N., Tregoning J.S. Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines. Gene Ther., 2014, Vol. 21, no. 7, pp. 645-652.
48. Wollner C.J., Richner M., Hassert M.A., Pinto A.K., Brien J.D., Richner J.M. A mRNA-LNP vaccine against Dengue Virus elicits robust, serotype-specific immunity. bioRxiv, 2021. doi.org/10.1101/2021.01.05.425517.
49. World Health Organization (WHO). Draft landscape and tracker of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
50. World Health Organization (WHO). Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Guidance Document. Geneva, Switzerland, March 01, 2021. Available at: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_01March2021.pdf.
51. Wu K., Werner A.P., Koch M., Choi A., Narayanan E., Stewart-Jones G.B.E., Colpitts T., Bennett H., Boyoglu-Barnum S., Shi W., Moliva J.I., Sullivan N.J., Graham B.S., Carfi A., Corbett K.S., Seder R.A., Edwards D.K. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. N. Engl. J. Med, 2021. doi: 10.1056/NEJMc2102179.
52. Zhang M., Sun J., Li M., Jin X. Modified mRNA-LNP vaccines confer protection against experimental DENV-2 Infection in Mice. Mol. Ther. Methods Clin. Dev., 2020, Vol. 18, pp. 702-712.
53. Zhou D., Dejnirattisai W., Supasa P., Liu C., Mentzer A.J., Ginn H.M., Zhao Y., Duyvesteyn H.M.E., Tuekprakhon A., Nutalai R., Wang B., Paesen G.C., Lopez-Camacho C., Slon-Campos J., Hallis B., Coombes N., Bewley K., Charlton S., Walter T.S., Skelly D., Lumley S.F., Dold C., Levin R., Dong T., Pollard A.J., Knight J.C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S., James W., Carroll M.W., Klenerman P., Barnes E., Dunachie S.J., Fry E.E., Mongkolsapaya J., Ren J., Stuart D.I., Screaton G.R. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021. doi: 10.1016/j.cell.2021.02.037.
54. Zhuang X., Qi Y., Wang M., Yu N., Nan F., Zhang H., Tian M., Li C., Lu H., Jin N. mRNA Vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel), 2020, Vol. 8, no. 1, 123. doi: 10.3390/vaccines8010123.
55. Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., Yadav V., Wang J., Woodard W., Lezak S.P., Lugogo N.L., Smith S.A., Morrissey J.H., Kanthi Y., Knight J.S. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med., 2020, Vol. 12, no. 570, eabd3876. doi: 10.1126/scitranslmed.abd3876.
Supplementary files
Review
For citations:
Blagov A.V., Bukaeva A.A., Makarov V.V., Bochkaeva Z.V. Safety and efficacy of RNA vaccines: State of the art. Medical Immunology (Russia). 2021;23(5):1017-1030. (In Russ.) https://doi.org/10.15789/1563-0625-SAE-2320