Lipopolysaccharide and ARDS caused by new coronavirus infection: hypotheses and facts
https://doi.org/10.15789/1563-0625-LAA-2229
Abstract
This review presents data from the literature that provide insight into the role of the lipopolysaccharide (LPS) of the Gram-negative bacteria in pathogenesis of acute respiratory distress syndrome (ARDS) caused by the novel SARS-CoV-2 coronavirus infection. ARDS is a syndrome of severe respiratory failure, an acutely occurring diffuse inflammatory lesion of lung tissue that develops as a nonspecific reaction to various direct (aspiration, inhalation of toxic gases), and systemic (sepsis, polytrauma) damaging factors and leading to development of acute respiratory failure (ARF), due to impaired structure of the lung parenchyma, disturbances in vascular permeability, decreased area of ventilated lung tissue. ARDS from coronavirus infection appears to have worse outcomes than ARDS from other causes. Mortality from typical ARDS at the intensive care units and hospitals is 35.3% and 40.0%, respectively, while the lethality rates for COVID-19-associated ARDS, ranged from 26% to 61.5%. Among patients who underwent artificial ventilation of the lungs, the mortality rates can range from 65.7% to 94%. Risk factors for poor outcomes include, e.g., older age, presence of concomitant diseases such as hypertension, cardiovascular disease and diabetes mellitus; decreased number of lymphocytes, kidney injury, and increased D-dimer levels. Death with ARDS in COVID-19 occurs as a result of respiratory failure (53%), respiratory failure combined with heart failure (33%), myocardial damage and circulatory failure (7%), or death from an unknown cause. A large number of studies show that bacterial LPS is directly or indirectly involved in all pathogenetic links of ARDS caused by the SARS-CoV-2 virus, i.e., worsening the course of inflammatory lung diseases due to decreased level of angiotensin-converting enzyme 2 (ACE2); increasing generation of reactive oxygen species (ROS) via NADPH oxidase and subsequent inactivation of endothelial nitric oxide synthase (eNOS) and decreasing bioavailability of endothelial NO, thus leading to endothelial dysfunction; interacting with proteins of surfactants. SP-A and SP-D, promoting early destruction of the cellular monolayers and lowering surface tension, interact with soluble CD14 receptor, which also has a pro-inflammatory effect on epithelial and endothelial cells, leading to p38MAPK activation via TLR4 receptors, causing degradation of IêBá protein and subsequent translocation of p65 NF-êB into the nucleus, thus inducing transcription of IL-6 and adhesion molecules (ICAM-1, VCAM-1 and E-selectin), and, as shown by Petruk et al. (2020), causing direct binding to the viral S protein in combination with LPS, thus enhancing activation of nuclear factor-kappa B (NF-êB) in monocytic THP-1 cells and cytokine responses in mononuclear blood cells. These pathophysiological mechanisms require further in-depth study in order to understand the nature of changes that occur in the patients with new SARS-CoV-2 infection.
About the Authors
I. A. YatskovRussian Federation
Assistant Professor, Department of Internal Medicine No. 2
295491, Republic of Crimea, Simferopol, Aeroflotsky smt, Malchenko str., 7, apt. 28, Phone: 7 (978) 709-40-15
V. A. Beloglazov
Russian Federation
PhD, MD (Medicine), Professor, Head, Department of Internal Medicine No. 2
Simferopol, Republic of Crimea
E. I. Ryapova
Russian Federation
Student, Department of Internal Medicine No. 2
Simferopol, Republic of Crimea
References
1. Beloglazov V.A., Yatskov I.A. Role of сathepsin G in pathogenesis of chronic obstructive lung disease: possible ways of regulation. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, Vol. 22, no. 3, p. 443-448. (In Russ.) doi: 10.15789/1563-0625-ROC-1769.
2. Zabolotskikh I.B., Shifman E.M. Anesthesiology – resuscitation science: clinical guidelines. Moscow: GEOTAR-Media, 2016. 960 p.
3. Konev Yu.V. The role of endotoxin in pathogenesis of metabolic syndrome and atherosclerosis. Eksperimentalnaya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology, 2012, no. 11, p. 11-22. (In Russ).
4. Miller R. Ronald Miller’s Anesthesiology. St. Petersburg: Chelovek, 2015. 3328 p.
5. Ryabov G.L. Hypoxia of critical conditions. Moscow: Meditsina, 1988. 288 p.
6. Akira S., Uematsu S., Takeuchi O. Pathogen Recognition and Innate Immunity. Cell, 2006, Vol. 124, no. 4, pp. 783-801.
7. Alenina N., Bader M. ACE2 in bvrain physiology and pathophysiology: evidence from transgenic animal models. Neurochem. Res., 2019, Vol. 44, no. 6, pp. 1323-1329.
8. Belančić A., Jovanović G.K., Majanović S.K. Obesity-related low-grade chronic inflammation: implementation of the dietary inflammatory index in clinical practice is the milestone? Medicina Fluminensis, 2018, Vol. 54, no. 4, pp. 373-378.
9. Belančić A. Gut microbiome dysbiosis and endotoxemia – Additional pathophysiological explanation for increased COVID-19 severity in obesity. Obes. Med., 2020, Vol. 20, 100302. doi: 10.1016/j.obmed.2020.100302.
10. Bellani G., Laffey J.G., Pham T. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, Vol. 315, pp. 788-800.
11. Blakeway L.V., Tan A., Peak R.A., Seib K.L. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. Microbiology, 2017, Vol. 163, pp. 1371-1384.
12. Bufler P., Schmidt B., Schikor D., Bauernfeind A., Crouch E.C., Griese M. Surfactant protein A and D differently regulate the immune response to nonmucoid Pseudomonas aeruginosa and its lipopolysaccharide. Am. J. Respir. Cell Mol. Biol., 2003, Vol. 28, pp. 249-256.
13. Cañadas O., Keough K.M., Casals C. Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films. Biophys. J., 2011, Vol. 100, no. 1, pp. 108-116.
14. Choi K.J., Cha S.I., Shin K. M., Lee J., Hwangbo Y., Yoo S.S., Lee J., Lee S.Y., Kim C.H., Park J.Y. Prevalence and predictors of pulmonary embolism in Korean patients with exacerbation of chronic obstructive pulmonary disease. Respiration, 2013, Vol. 85, no. 3, pp. 203-209.
15. Chroneos Z.C., Sever-Chroneos Z., Shepherd V.L. Pulmonary surfactant: an immunological perspective. Cell. Physiol. Biochem., 2010, Vol. 25, no. 1, pp. 13-26.
16. Curstedt T., Calkovska A., Johansson J. New generation synthetic surfactants. Neonatology, 2013, Vol. 103, no. 4, pp. 327-330.
17. Curstedt T., Johansson J. Different effects of surfactant proteins B and C – implications for development of synthetic surfactants. Neonatology, 2010, Vol. 97, no. 4, pp. 367-372.
18. Di Lorenzo F., Palmigiano A., Al Bitar-Nehme S. The lipid A from rhodopseudomonas palustris strain bisa53 lps possesses a unique structure and low immunostimulant properties. Chemistry, 2017, Vol. 23, no. 15, pp. 3637-3647.
19. Dickson R.P., Schultz M.J., Poll T.V., Schouten L.R., Falkowski N.R., Luth J.E., Sjoding M.W., Brown C.A., Chanderraj R., Huffnagle G.B. Biomarker Analysis in Septic ICU Patients (BASIC) Consortium. Lung microbiota predict clinical outcomes in critically ill Patients. Am. J. Respir. Crit. Care Med., 2020, Vol. 201, no. 5, pp. 555-563.
20. Echaide M., Autilio C., Arroyo R., Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim. Biophys. Acta Biomembr., 2017, Vol. 1859, no. 9, Pt B, pp. 1725-1739.
21. Einarsson G.G., Comer D.M., Mcilreavey L., Parkhill J., Ennis M., Tunney M.M., Elborn J.S. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, Vol. 71, no. 9, pp. 795-803.
22. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol., 2013 Vol. 13, no. 1, pp. 34-45.
23. Erb-Downward J.R., Thompson D.L., Han M.K., Freeman C.M., McCloskey L., Schmidt L.A., Young V.B., Toews G.B., Curtis J.L., Sundaram B. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One, 2011, Vol. 6, no. 2, e16384. doi: 10.1371/journal.pone.0016384.
24. Eriksson O., Hultström M., Persson B., Lipcsey M., Ekdahl K.N., Nilsson B., Frithiof R. Mannose-Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients. Thromb. Haemost., 2020, Vol. 120, no. 12, pp. 1720-1724.
25. Fan V.S., Gharib S.A., Martin T.R. Wurfel M.M. COPD disease severity and innate immune response to pathogen-associated molecular patterns. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, Vol. 11, pp. 467-477.
26. Galdeano C.M., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, Vol. 74, no. 2, pp. 115-124.
27. Gallo M.C., Kirkham C., Eng S., Bebawee R.S., Kong Y., Pettigrew M.M., Tettelin H., Murphy T.F. Changes in IgA protease expression are conferred by changes in genomes during persistent Infection by nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease. Infect. Immun., 2018, Vol. 86, no. 8, e00313-18. doi: 10.1128/IAI.00313-18.
28. Gardai S.J., Xiao Y.Q., Dickinson M., Nick J.A., Voelker D.R., Greene K.E., Henson P.M. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell, 2003, Vol. 115, no. 1, pp. 13-23.
29. Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust., 2020, Vol. 213, no. 2, pp. 54-56.
30. Grylls A., Seidler K., Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother., 2021, Vol. 137, 111334. doi: 10.1016/j.biopha.2021.111334.
31. Hennezel E., Abubucker S., Murphy L.O., Cullen T.W. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. Systems, 2017, Vol. 2, no. 6, e00046-17. doi: 10.1128/mSystems.00046-17e00046-17.
32. Hoel H., Heggelund L., Reikvam D.H., Stiksrud B., Ueland T., Michelsen A.E., Otterdal K., Muller K.E., Lind A., Muller F., Dudman S., Aukrust P., Dyrhol-Riise A.M., Holter J.C., Troseid M. Elevated markers of gut leakage and inflammasome activation in COVID-19 patients with cardiac involvement. J. Intern. Med., 2020, Vol.25, no. 10, joim.13178. doi: 10.1111/joim.13178.
33. Holmskov U., Thiel S., Jensenius J.C. Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol., 2003, Vol. 21, pp. 547-578.
34. Hou H.H., Wang H.C., Cheng S.L., Chen Y.F., K.Z. Lu, Yu C.J. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, Vol. 315, no. 3, pp. L432-L442.
35. Huang Y.J., Kim E., Cox M.J., Brodie E.L., Brown R., Wiener-Kronish J.P., Lynch S.V. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS, 2010, Vol. 14, no. 1, pp. 9-59.
36. Koliada A., Syzenko G., Moseiko V. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol., 2017, Vol. 17, no. 1, 120. doi: 10.1186/s12866-017-1027-1.
37. Kramer C.D., Genco C.A. Microbiota, immune subversion, and chronic inflammation. Front. Immunol., Vol. 8, 255. doi: 10.3389/fimmu.2017.00255.
38. Lei X., Dong X., Ma R. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun., 2020, Vol. 11, no. 1, 3810. doi: 10.1038/s41467-020-17665-9.
39. Li X.Y., He C., Zhu Y. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World J. Gastroenterol., 202, Vol. 26, no. 18, pp. 2187-2193.
40. Lu Y.C., Yen W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, Vol. 42, pp. 145-151.
41. Luo S., Zhang X., Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin. Gastroenterol. Hepatol., 2020, Vol. 18, pp. 1632-1633.
42. Mahmoud I.S., Jarrar Y.B., Alshaer W. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie, 2020, Vol. 175, pp. 93-98.
43. McGuinness A.J., Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J. Clin. Med., 2017, Vol. 6, no. 2, 21. doi: 10.3390/jcm6020021.
44. Miller R. Miller’s Anesthesia, 6th Edition. New York: Churchill Livingston, 2005. 3198 p.
45. Moffatt M.F., Cookson W.O. The lung microbiome in health and disease. Clin. Med., 2017, Vol. 17, pp. 525-529.
46. Molinaro A., Holst O., Di Lorenzo F. Chemistry of lipid A: At the heart of innate immunity. Chem. Eur. J., 2015, Vol. 21, pp. 500-519.
47. Moreira A.P., Texeira T.F., Ferreira A.B., Peluzio M., Alfenas R.C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxemia. Br. J. Nutr., Vol. 108, no. 5, pp. 801-809.
48. Munford R.S. Sensing Gram-Negative Bacterial Lipopolysaccharides: a Human Disease Determinant? Infect. Immun., 2008, Vol. 76, pp. 454-465.
49. Nagpal R., Newman T.M., Wang S., Jain S., Lovato J.F., Yadav H. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. J. Diabetes Res., 2018, Vol. 2018, 3462092. doi: 10.1155/2018/3462092.
50. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, Vol. 67, pp. 593-656.
51. Noris M., Benigni A., Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int., 2020, Vol. 98, no. 2, pp. 314-322.
52. Park B.S., Song D.H., Kim H.M., Choi B.S., Lee H., Lee J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 2009, Vol. 458, pp. 1191-1195.
53. Petruk G., Puthia M., Petrlova J., Strömdahl A., Kjellström S., Schmidtchen A. SARS-CoV-2 Spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J. Mol. Cell Biol., 2021, Vol. 12, no. 12, pp. 916-932.
54. Popkin B.M., Du S., Green W.D. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes. Rev., 2020, Vol. 71, no. 15, pp. 896-897.
55. Pragman A.A., Knutson K.A., Gould T.J., Isaacson R.E., Reilly C.S., Wendt C.H. Chronic obstructive pulmonary disease upper airway microbiota alpha diversity is associated with exacerbation phenotype: a case-control observational study. Respir. Res., 2019, Vol. 20, 114. doi: 10.1186/s12931-019-1080-4.
56. Qin J., Li R., Raes J. A human gut microbial gene catalog established by metagenomic sequencing. Nature, 2010, Vol. 464, no. 7285, pp. 59-65.
57. Ricklin D., Hajishengallis G., Yang K. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol., 2010, Vol. 11, no. 9, pp. 785-797.
58. Roos A., Bouwman L.H., Munoz J. Functional characterization of the lectin pathway of complement in human serum. Mol. Immunol., 2003, Vol. 39, pp. 655-668.
59. Russo A.J., Behl B., Banerjee I., Rathinam V. Emerging insights into noncanonical inflammasome recognition of microbes. J. Mol. Biol., 2018, Vol. 430, no. 2, pp. 207-216.
60. Sethi S., Maloney J., Grove L., Wrona C., Berenson C. S. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2006, Vol. 173, pp. 991-998.
61. Sethi S., Sethi R., Eschberger K., Lobbins P., Cai X., Grant B.J., Murphy T.F. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2007, Vol. 176, pp. 356-361.
62. Sirivongrangson P., Kulvichit W., Payungporn S. Endotoxemia and circulating bacteriome in severe COVID-19 patients. Intensive Care Med. Exp., 2020, Vol. 8, no. 1, 72. doi: 10.1186/s40635-020-00362-8.
63. Skelly A.N., Sato Y., Kearney S., Honda K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat. Rev. Immunol., 2019, Vol. 19, pp. 305-323.
64. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S., McCray P.B., Chappell M., Hackam D.J., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, Vol. 314, no. 1, pp. 17-31.
65. Thomson N.C. Targeting oxidant-dependent mechanisms for the treatment of respiratory diseases and their comorbidities. Curr. Opin. Pharmacol., 2018, Vol. 40, pp. 1-8.
66. Tian W., Zhang N., Jin R. Immune suppression in the early stage of COVID-19 disease. Nat. Commun., 2020, Vol. 11, no. 1, pp. 58-59.
67. van Eijk L. E., Binkhorst M., Bourgonje A.R., Offringa A.K., Mulder D.J., Bos E.M., Kolundzic N., Abdulle A.E., van der Voort P.H., Olde Rikkert M.G., van der Hoeven J.G., Den Dunnen W.F., Hillebrands J.L., van Goor H. COVID-19: immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol., 2021, Vol. 254, no. 4, pp. 307-331.
68. Wang C., Xu J., Yang L., Xu Y., Zhang X., Bai C., Kang J., Ran P., Shen H., Wen F. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet, 2018, Vol. 391, pp. 1706-1717.
69. Wang H., Head J., Kosma P., Brade H., Müller-Loennies S., Sheikh S., Mcdonald B., Smith K., Cafarella T., Seaton B., Crouch E. Recognition of heptoses and the inner core of bacterial lipopolysaccharides by surfactant protein D. Biochemistry, 2008, Vol. 47, pp. 710-720.
70. Weiss J., Barker J. Diverse pro-inflammatory endotoxin recognition systems of mammalian innate immunity. F1000Res, 2018, Vol. 7, F1000 Faculty Rev-516. doi: 10.12688/f1000research.13977.1.
71. Wu C., Chen X., Cai Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, Vol. 180, no. 7, pp. 934-943.
72. Zhang G., Meredith T.C., Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr. Opin. Microbiol., 2013, Vol. 16, pp. 779-785.
73. Zhang H., Kang Z., Gong H., Xu D., Wang J., Li Zh., Li Z., Cui X., Xiao J., Zhan J., Meng T., Zhou W., Liu J., Xu H. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut, 2020, Vol. 69, pp. 1010-1018.
Supplementary files
Review
For citations:
Yatskov I.A., Beloglazov V.A., Ryapova E.I. Lipopolysaccharide and ARDS caused by new coronavirus infection: hypotheses and facts. Medical Immunology (Russia). 2022;24(1):7-18. (In Russ.) https://doi.org/10.15789/1563-0625-LAA-2229