Preview

Medical Immunology (Russia)

Advanced search

EVALUATION OF FCR THERAPY EFFICACY IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA BASED ON IMMUNOGENETIC CRITERIA

https://doi.org/10.15789/1563-0625-2018-4-523-534

Abstract

A number of studies have shown that distinct common variants of the genes controlling immune/inflammatory response may affect efficiency of chronic lymphocytic leukemia (CLL) treatment. In a recently published paper, we reported polymorphic variants of some immune response genes in CLL patients to be associated with different rates of disease progression. Correlations between the distribution of gene modification profiles in indolent and agressive forms of CLL have been established. The present study describes results of pharmacogenetic studies aimed for identifying associations between the immune response genes polymorphism, and efficacy of FCR treatment regimen in CLL patients. 19 polymorphic loci of 14 immune response genes were studied in 33 patients with CLL who received FCR therapy. The TLR2, TLR3, TLR4, TLR6, TLR9, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, CD14, TNFα, FCGR2A genotypes were determined by polymerase chain reaction with allele-specific primers. CLL patients were divided into several groups depending on the terms of response to FCR treatment, i.e., achieving partial/complete remission after two, four, six courses of treatment, and those who did not respond to the therapy. Statistically significant differences in the distribution of haplotype frequencies were detected for the following genes: IL-1β (C-3953T, p = 0.02-0.009); IL-10 (C-819T, p = 0.04); IL-10 (G-1082A, p = 0.04-0.002-0.006), FCGR2A (His166Arg, p = 0.006); TLR4 (Thr399Ile, p = 0.02); TLR6 (Ser249Pro, p = 0.04); TLR9 (A2848G, p = 0.04-0.007); CD14 (C-159T, p = 0.03). When testing the significance hypothesis by multiple comparisons, the difference for the detected events was confirmed only for IL-10 gene (G-1082A, p < 0.01; χ2 = 20,082). The results show a relationship between the allelic status of the IL-10-1082 gene and the timing of response to FCR therapy, as well as predict a group of patients with primary-resistant CLL before treatment. The role of the relationship between IL-10 gene polymorphism and IL-10 production is discussed in connection with occurrence risk and clinical course of mature B-cell lymphoid malignancies. IL-10 is thought to be a growth factor for normal and transformed human B-lymphocytes, it controls a balance between cellular and humoral immune responses while exerting a pronounced immunosuppressive activity, along with ability to stimulate tumor cell proliferation. A rationale for conducting pharmacogenomic studies in CLL is provided, in order to predict efficiency of a specific drug or their combination in a distinct patient, thus representing chances to detect a factor which may influence success of the therapy since its earlier stage.

About the Authors

E. L. Nazarova
Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical-Biological Agency
Russian Federation

PhD (Medicine), Leading Research Associate, Laboratory of Leukemia Immunology,

610027, Kirov, Krasnoarmeiskaya str., 72



E. E. Sukhorukova
Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical-Biological Agency
Russian Federation

PhD (Medicine), Research Associate, Laboratory of Leukemia Immunology,

Kirov



N. V. Minaeva
Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical-Biological Agency
Russian Federation

PhD (Medicine), Deputy Director for Clinics,

Kirov



V. I. Shardakov
Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical-Biological Agency
Russian Federation

PhD, MD (Medicine), Professor, Head, Laboratory of Leukemia Immunology,

Kirov



E. S. Fokina
Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical-Biological Agency
Russian Federation

PhD (Medicine), Resident Physician, Department of Clinical Diagnostics,

Kirov



References

1. Назарова Е.Л., Шардаков В.И., Демьянова В.Т., Докшина И.А., Зотина Е.Н. Модификации генов иммунного ответа при различных типах течения хронического лимфолейкоза // Ученые записки СПбГМУ им. акад. И.П. Павлова, 2015. Т. XXII, № 1. С. 21-24. [Nazarova E.L., Shardakov V.I., Demyanova V.T., Dokshina I.A., Zotina E.N. Modification of immune response genes in various types of chronic lymphocytic leukemia. Uchenye zapiski SPbGMU im. akad. I.P. Pavlova = Record of the I.P. Pavlov St. Petersburg State Medical University, 2015, Vol. XXII, no. 1, pp. 21-24. (In Russ.)]

2. Aklilu M., Stadler W.M., Markiewicz M., Vogelzang N.J., Mahowald M., Johnson M., Gajewski T.F. Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann. Oncol., 2004, Vol. 15, no. 7, pp. 1109-1114.

3. Alas S., Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res., 2003, Vol. 9, no. 1, pp. 316-326.

4. Alas S., Bonavida B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res., 2001, Vol. 61, no. 13, pp. 5137-5144.

5. Alas S., Emmanouilides C., Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin. Cancer Res., 2001, Vol. 7, no. 3, pp. 709-723.

6. Baran W., Szepietowski J.C., Mazur G., Baran E. IL-6 and IL-10 promoter gene polymorphisms in psoriasis vulgaris. Acta Derm. Venereol., 2008, Vol. 88, no. 2, pp. 113-116.

7. Béguelin W., Sawh S., Chambwe N., Chan F.C., Jiang Y., Choo J.-W., Scott D.W., Chalmers A., Geng H., Tsikitas L., Tam W., Bhagat W., Gascoyne R.D., Shaknovich R. IL-10 receptor is a novel therapeutic target in DLBCLs. Leukemia, 2015, Vol. 29, no. 8, pp. 1-11.

8. Binet J.L., Auquier A., Dighiero G., Chastang C., Piguet H., Goasguen J., Vaugier G., Potron G., Colona P., Oberling F., Thomas M., Tchernia G., Jacquillat C., Boivin P., Lesty C., Duault M.T., Monconduit M., Belabbes S., Gremy F. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer, 1981, Vol. 48, no. 1, pp. 198-206.

9. Blay J.Y., Burdin N., Rousset F., Lenoir G., Biron P., Philip T., Banchereau J., Favrot M.C. Serum interleukin-10 in non-Hodgkin’s lymphoma: a prognostic factor. Blood, 1993, Vol. 82, no. 7, pp. 2169-2174.

10. Cartron G., Watier H., Golay J., Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood, 2004, Vol. 104, no. 9, pp. 2635-2642.

11. Chen Y., Zheng T., Lan Q., Foss F., Kim C., Chen X., Dai M., Li Y., Holford T., Leaderer B., Boyle P., Chanock S.J., Rothman N., Zhang Y. Cytokine polymorphisms in Th1/Th 2 pathway genes, body mass index, and risk of non-Hodgkin lymphoma. Blood, 2011, Vol. 117, no. 2, pp. 585-590.

12. de Waal Malefyt R., Abrams J., Bennett B., Figdor C.G., de Vries J.E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-b produced by monocytes. J. Exp. Med., 1991, Vol. 174, no. 5, pp. 1209-1220.

13. Domen J., Gandy K.L., Weissman I.L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood, 1998, Vol. 91, no. 7, pp. 2272–2282.

14. Domingo-Domènech E., Benavente Y., González-Barca E., Montalban C., Gumà J., Bosch R., Wang S.S., Lan Q., Whitby D., Fernández de Sevilla A., Rothman N., de Sanjosé S. Impact of interleukin-10 polymorphisms (-1082 and -3575) on the survival of patients with lymphoid neoplasms. Haematologica, 2007, Vol. 92, no. 11, pp. 1475-1481.

15. Falduto A., Cimino F., Speciale A., Musolino C., Gangemi S., Saija A., Allegra A. How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev., 2017, Vol. 31, no. 4, pp. 235-249.

16. Fayad L., Keating M.J., Reuben J.M., O’Brien S., Lee B.N., Lerner S., Kurzrock R. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood, 2001, Vol. 97, no. 1, pp. 256-263.

17. Fiorentino D.F., Bond M.W., Mosmann T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J. Exp. Med., 1989, Vol. 170, no. 6, pp. 2081-2095.

18. Fiorentino D.F., Zlotnik A., Vieira P., Mosmann T.R., Howard M., Moore K.W., O’Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol., 1991, Vol. 146, no. 10, pp. 3444-3451.

19. Gagez A.L., Tuaillon E., Cezar R., Dartigeas C., Mahé B., Letestu R., Maisonneuve H., Gouilleux-Gruart V., Bollore K., Ferrant E., Aurran T., Feugier P., Leprêtre S., Cartron G. Response to rituximab in B-CLL patients is adversely impacted by frequency of IL-10 competent B cells and FcγRIIIa polymorphism. A study of FCGCLL/WM and GOELAMS groups. Blood Cancer J., 2016, Vol. 6, e389. doi: 10.1038/bcj.2015.115.

20. Habermann T.M., Wang S.S., Maurer M.J., Morton L.M., Lynch C.F., Ansell S.M., Hartge P., Severson R.K., Rothman N., Davis S., Geyer S.M., Cozen W., Chanock S.J., Cerhan J.R. Host immune gene polymorphisms in combination with clinical and demographic factors predict late survival in diffuse large B-cell lymphoma patients in the pre-rituximab era. Blood, 2008, Vol. 112, no. 7, pp. 2694-2702.

21. Hohaus S., Giachelia M., di Febo A., Martini M., Massini G., Vannata B., D’Alo’ F., Guidi F., Greco M., Pierconti F., Larocca L.M., Voso M.T., Leone G. Polymorphism in cytokine genes as prognostic markers in Hodgkin’s lymphoma. Ann. Oncol., 2007, Vol. 18, no. 8, pp. 1376-1381.

22. Huang S.J., Lee L.J., Gerrie A.S., Gillan T.L., Bruyere H., Hrynchak M., Smith A.C., Karsan A., Ramadan K.M., Jayasundara K.S., Toze C.L. Characterization of treatment and outcomes in a population-based cohort of patients with chronic lymphocytic leukemia referred for cytogenetic testing in British Columbia, Canada. Leuk. Res., 2017, Vol. 55, pp. 79-90.

23. Jamroziak K., Puła B., Walewski J. Current treatment of chronic lymphocytic leukemia. Curr. Treat. Options Oncol., 2017, Vol. 18, no. 1, p. 5.

24. Kim M.K., Yoon K.-A., Park E.Y., Joo J., Lee E.Y., Eom H.-S., Kong S.-Y. Interleukin-10 polymorphisms in association with prognosis in patients with B-cell lymphoma treated by R-CHOP. Genomics Inform., 2016, Vol. 14, no. 4, pp. 205-210.

25. Kube D., Hua T.D., von Bonin F., Schoof N., Zeynalova S., Klöss M., Gocht D., Potthoff B., Tzvetkov M., Brockmöller J., Löffler M., Pfreundschuh M., Trümper L. Effect of interleukin-10 gene polymorphisms on clinical outcome of patients with aggressive non-Hodgkin’s lymphoma: an exploratory study. Clin. Cancer Res., 2008, Vol. 14, no. 12, pp. 3777-3784.

26. Lan Q., Zheng T., Rothman N., Zhang Y., Wang S.S., Shen M., Berndt S.I., Zahm S.H., Holford T.R., Leaderer B., Yeager M., Welch R., Boyle P., Zhang B., Zou K., Zhu Y., Chanock S. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood, 2006, Vol. 107, no. 10, pp. 4101-4108.

27. Lech-Maranda E., Baseggio L., Bienvenu J., Charlot C., Berger F., Rigal D., Warzocha K., Coiffier B., Salles G. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood, 2004, Vol. 103, no. 9, pp. 3529-3534.

28. Lech-Maranda E., Baseggio L., Charlot C., Rigal D., Berger F., Jamroziak K., Warzocha K., Coiffier B., Salles G. Genetic polymorphisms in the proximal IL-10 promoter and susceptibility to non-Hodgkin lymphoma. Leuk. Lymphoma, 2007, Vol. 48, no. 11, pp. 2235-2238.

29. Miyazaki I., Cheung R.K., Dosch H.M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein–Barr virus. J. Exp. Med., 1993, Vol. 178, no. 2, pp. 439-447.

30. O’Garra A., Stapleton G., Dhar V., Pearce M., Schumacher J., Rugo H., Barbis D., Stall A., Cupp J., Moore K., Vieira P., Mosmann T., Whitmore A., Arnold L., Haughton G., Howard M. Production of cytokines by mouse B cell: B lymphomas and normal B cells produce interleukin 10. Int. Immunol., 1990, Vol. 2, no. 9, pp. 821-832.

31. Pang N., Zhang R., Li J., Zhang Z., Yuan H., Chen G., Zhao F., Wang L., Cao H., Qu J., Ding J. Increased IL-10/IL-17 ratio is aggravated along with the prognosis of patients with chronic lymphocytic leukemia. Int. Immunopharmacol., 2016, Vol. 40, pp. 57-64.

32. Qiu H., Li J., Feng Z., Yuan J., Lu J., Hu X., Gao L., Lv S., Yang J., Chen L. CD19(+) CD20(-) CD27(hi) IL-s10-producing B cells are overrepresented in R-CHOP-treated DLBCL patients in complete remission. Clin. Exp. Pharmacol. Physiol., 2016, Vol. 43, no. 9, pp. 795-801.

33. Rai K.R., Sawitsky A., Cronkite E.P., Chanana A.D., Levy R.N., Pasternack B.S. Clinical staging of chronic lymphocytic leukemia. Blood, 1975, Vol. 46, no. 2, pp. 219-234.

34. Reed J.C. Bcl-2 family proteins: regulators of chemoresistance in cancer. Toxicol. Lett., 1995, Vol. 82-83, pp. 155-158.

35. Rousset F., Garcia E., Defrance T., Peronne C., Vezzio N., Hsu D.H., Kastelein R., Moore K.W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Immunology, 1992, Vol. 89, no. 5, pp. 1890-1893.

36. Sarris A.H., Kliche K.O., Pethambaram P., Preti A., Tucker S., Jackow C., Messina O., Pugh W., Hagemeister F.B., McLaughlin P., Rodriguez M.A., Romaguera J., Fritsche H., Witzig T., Duvic M., Andreeff M., Cabanillas F. Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann. Oncol., 1999, Vol. 10, no. 4, pp. 433-440.

37. Shapiro-Shelef M., Calame K. Regulation of plasma-cell development. Nat. Rev. Immunol., 2005, Vol. 5, no. 3, pp. 230-242.

38. Tarabar O., Cikota-Aleksić B., Tukić L., Milanović N., Aleksić A., Magić Z. Association of interleukin-10, tumor necrosis factor-a and transforming growth factor-β gene polymorphisms with the outcome of diffuse large B-cell lymphomas. Int. J. Clin. Oncol., 2014, Vol. 19, no. 1, pp. 186-192.

39. Tsujimoto Y. Stress-resistance conferred by high level of bcl-2 a protein in human B lymphoblastoid cell. Oncogene, 1989, Vol. 4, no. 11, pp. 1331-1336.

40. Weber-Nordt R.M., Henschler R., Schott E., Wehinger J., Behringer D., Mertelsmann R., Finke J. Interleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells. Blood, 1996, Vol. 88, no. 7, pp. 2549-2558.


Review

For citations:


Nazarova E.L., Sukhorukova E.E., Minaeva N.V., Shardakov V.I., Fokina E.S. EVALUATION OF FCR THERAPY EFFICACY IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA BASED ON IMMUNOGENETIC CRITERIA. Medical Immunology (Russia). 2018;20(4):523-534. (In Russ.) https://doi.org/10.15789/1563-0625-2018-4-523-534

Views: 990


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)