Preview

Медицинская иммунология

Расширенный поиск

ОЦЕНКА ЭФФЕКТИВНОСТИ ТЕРАПИИ FCR У БОЛЬНЫХ ХРОНИЧЕСКИМ ЛИМФОЛЕЙКОЗОМ НА ОСНОВАНИИ ИММУНОГЕНЕТИЧЕСКИХ КРИТЕРИЕВ

https://doi.org/10.15789/1563-0625-2018-4-523-534

Полный текст:

Аннотация

В многочисленных исследованияx показано, что распространенные варианты генов иммунного/воспалительного ответа могут оказывать влияние на эффективность лечения хронического лимфолейкоза (CLL). В ранее опубликованной работе мы представили данные, что полиморфные варианты ряда генов иммунного ответа у больных CLL ассоциированы с различной скоростью прогрессирования заболевания. Установлены корреляционные связи распределения модификационных профилей генов при доброкачественной и прогрессирующей формах CLL. В данном исследовании отражены результаты фармакогенетических изысканий, направленных на выявление ассоциаций между полиморфизмом генов иммунного ответа и эффективностью лечения FCR больных CLL. Исследовались 19 полиморфных участков 14 генов иммунного ответа у 33 пациентов с CLL, получавших терапию FCR. Генотипы TLR2, TLR3, TLR4, TLR6, TLR9, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, CD14, TNFα, FCGR2A определяли методом полимеразной цепной реакции с аллель-специфичными праймерами. Больные CLL были разделены на несколько групп в зависимости от сроков ответа на лечение FCR: с частичной/полной ремиссией заболевания после двух, четырех, шести курсов лечения и с отсутствием ответа не терапию. Выявленные статистически значимые различия в распределении частот гаплотипов затрагивали гены IL-1β (C-3953T) (р = 0,02-0,009), IL-10 (C-819T) (р = 0,04), IL-10 (G-1082A) (р = 0,04-0,002-0,006), FCGR2A (His166Arg) (р = 0,006), TLR4 (Thr399Ile) (р = 0,02), TLR6 (Ser249Pro) (р = 0,04), TLR9 (A2848G) (р = 0,04-0,007), CD14 (C-159T) (р = 0,03). При проверке гипотезы достоверности результатов множественных сравнений была подтверждена значимость обнаруженных событий только для гена IL-10 (G-1082A) (р < 0,01; χ2 = 20,082). Полученные результаты показывают взаимосвязь между мутационным статусом гена IL-10-1082 и сроками ответа на терапию FCR, а также позволяют выделить группу больных с первично-резистентными к FCR формами CLL до начала лечения. Обсуждается роль взаимоотношений между полиморфизмом гена IL-10 и продукцией IL-10 с вероятностью возникновения и характером течения В-зрелоклеточных опухолей лимфатической системы. Доказанным считается, что IL-10 является фактором роста для неизмененных и трансформированных В-лимфоцитов человека, контролирует баланс между клеточным и гуморальным иммунными ответами, обладает выраженной иммуносупрессивной активностью, наряду со способностью стимулировать пролиферацию опухолевых клеток. Приводятся обоснования проведения фармакогеномных исследований при CLL для прогнозирования эффективности конкретного препарата или комбинации лекарственных средств у каждого пациента, что в перспективе позволит обнаружить фактор, влияющий на успех терапии уже на ранних ее этапах.

Об авторах

Е. Л. Назарова
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства»
Россия

к.м.н., ведущий научный сотрудник лаборатории иммунологии лейкозов,

610027, г. Киров, ул. Красноармейская, 72



Э. Е. Сухорукова
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства»
Россия

к.м.н., научный сотрудник лаборатории иммунологии лейкозов,

г. Киров



Н. В. Минаева
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства»
Россия

к.м.н., заместитель директора по лечебной работе,

г. Киров



В. И. Шардаков
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства»
Россия

д.м.н., профессор, заведующий лабораторией иммунологии лейкозов,

г. Киров



Е. С. Фокина
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства»
Россия

к.м.н., врач-ординатор клиникодиагностического отделения,

г. Киров



Список литературы

1. Назарова Е.Л., Шардаков В.И., Демьянова В.Т., Докшина И.А., Зотина Е.Н. Модификации генов иммунного ответа при различных типах течения хронического лимфолейкоза // Ученые записки СПбГМУ им. акад. И.П. Павлова, 2015. Т. XXII, № 1. С. 21-24. [Nazarova E.L., Shardakov V.I., Demyanova V.T., Dokshina I.A., Zotina E.N. Modification of immune response genes in various types of chronic lymphocytic leukemia. Uchenye zapiski SPbGMU im. akad. I.P. Pavlova = Record of the I.P. Pavlov St. Petersburg State Medical University, 2015, Vol. XXII, no. 1, pp. 21-24. (In Russ.)]

2. Aklilu M., Stadler W.M., Markiewicz M., Vogelzang N.J., Mahowald M., Johnson M., Gajewski T.F. Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann. Oncol., 2004, Vol. 15, no. 7, pp. 1109-1114.

3. Alas S., Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res., 2003, Vol. 9, no. 1, pp. 316-326.

4. Alas S., Bonavida B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res., 2001, Vol. 61, no. 13, pp. 5137-5144.

5. Alas S., Emmanouilides C., Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin. Cancer Res., 2001, Vol. 7, no. 3, pp. 709-723.

6. Baran W., Szepietowski J.C., Mazur G., Baran E. IL-6 and IL-10 promoter gene polymorphisms in psoriasis vulgaris. Acta Derm. Venereol., 2008, Vol. 88, no. 2, pp. 113-116.

7. Béguelin W., Sawh S., Chambwe N., Chan F.C., Jiang Y., Choo J.-W., Scott D.W., Chalmers A., Geng H., Tsikitas L., Tam W., Bhagat W., Gascoyne R.D., Shaknovich R. IL-10 receptor is a novel therapeutic target in DLBCLs. Leukemia, 2015, Vol. 29, no. 8, pp. 1-11.

8. Binet J.L., Auquier A., Dighiero G., Chastang C., Piguet H., Goasguen J., Vaugier G., Potron G., Colona P., Oberling F., Thomas M., Tchernia G., Jacquillat C., Boivin P., Lesty C., Duault M.T., Monconduit M., Belabbes S., Gremy F. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer, 1981, Vol. 48, no. 1, pp. 198-206.

9. Blay J.Y., Burdin N., Rousset F., Lenoir G., Biron P., Philip T., Banchereau J., Favrot M.C. Serum interleukin-10 in non-Hodgkin’s lymphoma: a prognostic factor. Blood, 1993, Vol. 82, no. 7, pp. 2169-2174.

10. Cartron G., Watier H., Golay J., Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood, 2004, Vol. 104, no. 9, pp. 2635-2642.

11. Chen Y., Zheng T., Lan Q., Foss F., Kim C., Chen X., Dai M., Li Y., Holford T., Leaderer B., Boyle P., Chanock S.J., Rothman N., Zhang Y. Cytokine polymorphisms in Th1/Th 2 pathway genes, body mass index, and risk of non-Hodgkin lymphoma. Blood, 2011, Vol. 117, no. 2, pp. 585-590.

12. de Waal Malefyt R., Abrams J., Bennett B., Figdor C.G., de Vries J.E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-b produced by monocytes. J. Exp. Med., 1991, Vol. 174, no. 5, pp. 1209-1220.

13. Domen J., Gandy K.L., Weissman I.L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood, 1998, Vol. 91, no. 7, pp. 2272–2282.

14. Domingo-Domènech E., Benavente Y., González-Barca E., Montalban C., Gumà J., Bosch R., Wang S.S., Lan Q., Whitby D., Fernández de Sevilla A., Rothman N., de Sanjosé S. Impact of interleukin-10 polymorphisms (-1082 and -3575) on the survival of patients with lymphoid neoplasms. Haematologica, 2007, Vol. 92, no. 11, pp. 1475-1481.

15. Falduto A., Cimino F., Speciale A., Musolino C., Gangemi S., Saija A., Allegra A. How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev., 2017, Vol. 31, no. 4, pp. 235-249.

16. Fayad L., Keating M.J., Reuben J.M., O’Brien S., Lee B.N., Lerner S., Kurzrock R. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood, 2001, Vol. 97, no. 1, pp. 256-263.

17. Fiorentino D.F., Bond M.W., Mosmann T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J. Exp. Med., 1989, Vol. 170, no. 6, pp. 2081-2095.

18. Fiorentino D.F., Zlotnik A., Vieira P., Mosmann T.R., Howard M., Moore K.W., O’Garra A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol., 1991, Vol. 146, no. 10, pp. 3444-3451.

19. Gagez A.L., Tuaillon E., Cezar R., Dartigeas C., Mahé B., Letestu R., Maisonneuve H., Gouilleux-Gruart V., Bollore K., Ferrant E., Aurran T., Feugier P., Leprêtre S., Cartron G. Response to rituximab in B-CLL patients is adversely impacted by frequency of IL-10 competent B cells and FcγRIIIa polymorphism. A study of FCGCLL/WM and GOELAMS groups. Blood Cancer J., 2016, Vol. 6, e389. doi: 10.1038/bcj.2015.115.

20. Habermann T.M., Wang S.S., Maurer M.J., Morton L.M., Lynch C.F., Ansell S.M., Hartge P., Severson R.K., Rothman N., Davis S., Geyer S.M., Cozen W., Chanock S.J., Cerhan J.R. Host immune gene polymorphisms in combination with clinical and demographic factors predict late survival in diffuse large B-cell lymphoma patients in the pre-rituximab era. Blood, 2008, Vol. 112, no. 7, pp. 2694-2702.

21. Hohaus S., Giachelia M., di Febo A., Martini M., Massini G., Vannata B., D’Alo’ F., Guidi F., Greco M., Pierconti F., Larocca L.M., Voso M.T., Leone G. Polymorphism in cytokine genes as prognostic markers in Hodgkin’s lymphoma. Ann. Oncol., 2007, Vol. 18, no. 8, pp. 1376-1381.

22. Huang S.J., Lee L.J., Gerrie A.S., Gillan T.L., Bruyere H., Hrynchak M., Smith A.C., Karsan A., Ramadan K.M., Jayasundara K.S., Toze C.L. Characterization of treatment and outcomes in a population-based cohort of patients with chronic lymphocytic leukemia referred for cytogenetic testing in British Columbia, Canada. Leuk. Res., 2017, Vol. 55, pp. 79-90.

23. Jamroziak K., Puła B., Walewski J. Current treatment of chronic lymphocytic leukemia. Curr. Treat. Options Oncol., 2017, Vol. 18, no. 1, p. 5.

24. Kim M.K., Yoon K.-A., Park E.Y., Joo J., Lee E.Y., Eom H.-S., Kong S.-Y. Interleukin-10 polymorphisms in association with prognosis in patients with B-cell lymphoma treated by R-CHOP. Genomics Inform., 2016, Vol. 14, no. 4, pp. 205-210.

25. Kube D., Hua T.D., von Bonin F., Schoof N., Zeynalova S., Klöss M., Gocht D., Potthoff B., Tzvetkov M., Brockmöller J., Löffler M., Pfreundschuh M., Trümper L. Effect of interleukin-10 gene polymorphisms on clinical outcome of patients with aggressive non-Hodgkin’s lymphoma: an exploratory study. Clin. Cancer Res., 2008, Vol. 14, no. 12, pp. 3777-3784.

26. Lan Q., Zheng T., Rothman N., Zhang Y., Wang S.S., Shen M., Berndt S.I., Zahm S.H., Holford T.R., Leaderer B., Yeager M., Welch R., Boyle P., Zhang B., Zou K., Zhu Y., Chanock S. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood, 2006, Vol. 107, no. 10, pp. 4101-4108.

27. Lech-Maranda E., Baseggio L., Bienvenu J., Charlot C., Berger F., Rigal D., Warzocha K., Coiffier B., Salles G. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood, 2004, Vol. 103, no. 9, pp. 3529-3534.

28. Lech-Maranda E., Baseggio L., Charlot C., Rigal D., Berger F., Jamroziak K., Warzocha K., Coiffier B., Salles G. Genetic polymorphisms in the proximal IL-10 promoter and susceptibility to non-Hodgkin lymphoma. Leuk. Lymphoma, 2007, Vol. 48, no. 11, pp. 2235-2238.

29. Miyazaki I., Cheung R.K., Dosch H.M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein–Barr virus. J. Exp. Med., 1993, Vol. 178, no. 2, pp. 439-447.

30. O’Garra A., Stapleton G., Dhar V., Pearce M., Schumacher J., Rugo H., Barbis D., Stall A., Cupp J., Moore K., Vieira P., Mosmann T., Whitmore A., Arnold L., Haughton G., Howard M. Production of cytokines by mouse B cell: B lymphomas and normal B cells produce interleukin 10. Int. Immunol., 1990, Vol. 2, no. 9, pp. 821-832.

31. Pang N., Zhang R., Li J., Zhang Z., Yuan H., Chen G., Zhao F., Wang L., Cao H., Qu J., Ding J. Increased IL-10/IL-17 ratio is aggravated along with the prognosis of patients with chronic lymphocytic leukemia. Int. Immunopharmacol., 2016, Vol. 40, pp. 57-64.

32. Qiu H., Li J., Feng Z., Yuan J., Lu J., Hu X., Gao L., Lv S., Yang J., Chen L. CD19(+) CD20(-) CD27(hi) IL-s10-producing B cells are overrepresented in R-CHOP-treated DLBCL patients in complete remission. Clin. Exp. Pharmacol. Physiol., 2016, Vol. 43, no. 9, pp. 795-801.

33. Rai K.R., Sawitsky A., Cronkite E.P., Chanana A.D., Levy R.N., Pasternack B.S. Clinical staging of chronic lymphocytic leukemia. Blood, 1975, Vol. 46, no. 2, pp. 219-234.

34. Reed J.C. Bcl-2 family proteins: regulators of chemoresistance in cancer. Toxicol. Lett., 1995, Vol. 82-83, pp. 155-158.

35. Rousset F., Garcia E., Defrance T., Peronne C., Vezzio N., Hsu D.H., Kastelein R., Moore K.W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Immunology, 1992, Vol. 89, no. 5, pp. 1890-1893.

36. Sarris A.H., Kliche K.O., Pethambaram P., Preti A., Tucker S., Jackow C., Messina O., Pugh W., Hagemeister F.B., McLaughlin P., Rodriguez M.A., Romaguera J., Fritsche H., Witzig T., Duvic M., Andreeff M., Cabanillas F. Interleukin-10 levels are often elevated in serum of adults with Hodgkin’s disease and are associated with inferior failure-free survival. Ann. Oncol., 1999, Vol. 10, no. 4, pp. 433-440.

37. Shapiro-Shelef M., Calame K. Regulation of plasma-cell development. Nat. Rev. Immunol., 2005, Vol. 5, no. 3, pp. 230-242.

38. Tarabar O., Cikota-Aleksić B., Tukić L., Milanović N., Aleksić A., Magić Z. Association of interleukin-10, tumor necrosis factor-a and transforming growth factor-β gene polymorphisms with the outcome of diffuse large B-cell lymphomas. Int. J. Clin. Oncol., 2014, Vol. 19, no. 1, pp. 186-192.

39. Tsujimoto Y. Stress-resistance conferred by high level of bcl-2 a protein in human B lymphoblastoid cell. Oncogene, 1989, Vol. 4, no. 11, pp. 1331-1336.

40. Weber-Nordt R.M., Henschler R., Schott E., Wehinger J., Behringer D., Mertelsmann R., Finke J. Interleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells. Blood, 1996, Vol. 88, no. 7, pp. 2549-2558.


Для цитирования:


Назарова Е.Л., Сухорукова Э.Е., Минаева Н.В., Шардаков В.И., Фокина Е.С. ОЦЕНКА ЭФФЕКТИВНОСТИ ТЕРАПИИ FCR У БОЛЬНЫХ ХРОНИЧЕСКИМ ЛИМФОЛЕЙКОЗОМ НА ОСНОВАНИИ ИММУНОГЕНЕТИЧЕСКИХ КРИТЕРИЕВ. Медицинская иммунология. 2018;20(4):523-534. https://doi.org/10.15789/1563-0625-2018-4-523-534

For citation:


Nazarova E.L., Sukhorukova E.E., Minaeva N.V., Shardakov V.I., Fokina E.S. EVALUATION OF FCR THERAPY EFFICACY IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA BASED ON IMMUNOGENETIC CRITERIA. Medical Immunology (Russia). 2018;20(4):523-534. (In Russ.) https://doi.org/10.15789/1563-0625-2018-4-523-534

Просмотров: 161


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)