INTERLEUKIN 33 AND FIBROSIS: PATHOGENESIS UPDATED
https://doi.org/10.15789/1563-0625-2018-4-477-484
Abstract
Interleukin 33 (IL-33) is a member of the IL-1 family, which is widely expressed on all types of cells. IL-33 was identified as a functional ligand for the plasma membrane receptor complex, which is a heterodimer consisting of a membrane bound ST2 receptor (growth stimulating factor). IL-33 is involved in the development of immune response with predominant release of pro-inflammatory T helper type 2 cytokines. IL-33 is widely expressed on various structure-forming cells, such as epithelial, endothelial and smooth muscle cells. Increased expression of IL-33 is observed during necrosis of these cells (after tissue or cell damage), and it is released into extracellular space, and acts as an endogenous danger signal, sending a sort of warnings to neighboring cells and tissues. Recently, many studies have shown that IL-33 can participate in development and progression of fibrosis in various organs. However, it exerts anti-inflammatory effects upon development of other diseases. This review will discuss biological characteristics of IL-33 and a role of the IL-33/ST2 signaling pathway in the development of fibrosis.
About the Authors
E. G. UchasovaRussian Federation
PhD (Medicine), Senior Research Associate, Laboratory Research Homeostasis,
650002, Kemerovo, Sosnovy bvld, 6
O. V. Gruzdeva
Russian Federation
PhD, MD (Medicine), Head, Laboratory Research Homeostasis;
Associate Professor, Department of Pathological Physiology, Medical and Clinical Biochemistry,
Kemerovo
Yu. A. Dileva
Russian Federation
PhD (Medicine), Research Associate, Laboratory Research Homeostasis,
Kemerovo
V. N. Karetnikova
Russian Federation
PhD, MD (Medicine), Professor, Head, Pathophysiology Laboratory of Multifocal Atherosclerosis;
Professor, Department of Cardiology and Cardiovascular Surgery,
Kemerovo
References
1. Ashlin T.G., Buckley M.L., Salter R.C., Johnson J.L., Kwan A.P., Ramji D.P. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. Int. J. Biochem. Cell Biol., 2014, Vol. 46, pp. 113-123.
2. Barbarash O., Gruzdeva O., Uchasova E., Dyleva Y., Belik E., Akbasheva O., Karetnikova V., Shilov A. Prognostic value of soluble ST2 during hospitalization for ST-segment elevation myocardial infarction. Ann. Lab. Med., 2016, Vol. 36, no. 4, pp. 313-319.
3. Baudino T.A., Carver W., Giles W., Borg T.K. Cardiac fibroblasts: friend or foe? Am. J. Physiol., 2006, Vol. 291, pp. 1015-1026.
4. Bulek K., Swaidani S., Qin J., Lu Y., Gulen M.F., Herjan T., Min B., Kastelein R.A., Aronica M., KoszVnenchak M., Li X. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. J. Immunol., 2009, Vol. 182, no. 5, pp. 2601-2609.
5. Cardilo-Reis L., Gruber S., Schreier S.M., Drechsler M., Papac-Milicevic N., Weber C., Wagner O., Stangl H., Soehnlein O., Binder C.J. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med., 2012, Vol. 4, pp. 1072-1086.
6. Carriere V., Roussel L., Ortega N., Lacorre D.A., Americh L., Aguilar L., Bouche G., Girard J.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, pp. 282-287.
7. Chackerian A.A., Oldham E.R., Murphy E.E., Schmitz J., Pflanz S., Kastelein R.A. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol., 2007, Vol. 179, pp. 2551-2555.
8. Cherry W.B., Yoon J., Bartemes K.R., Iijima K., Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol., 2008, Vol. 121, no. 6, pp. 1484-1490.
9. Daniels L.B., Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol., 2014, Vol. 10, no. 10, pp. 525-539.
10. Dieplinger B., Mueller T. Soluble ST2 in heart failure. Clin. Chim. Acta., 2015, Vol. 443, pp. 57-70.
11. Diez J., Gonzalez A., Lopez B., Querejeta R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nature Clin. Pract. Cadiovasc. Med., 2005, Vol. 2, no. 4. pp. 209-216.
12. Friedman S.L. Liver fibrosis – from bench to bedside. J. Hepatol. 2003, Vol. 38, no. 1, pp. 38-53.
13. Gao Q., Li Y., Li M. The potential role of IL-33/ST2 signaling in fibrotic diseases. J. Leukoc. Biol., 2015, Vol. 98, no. 1, pp. 15-22.
14. Garlanda C., Anders H.J., Mantovani A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol., 2009, Vol. 30, no. 9, pp. 439-446.
15. Hasan A., Al-Ghimlas F., Warsame S., Al-Hubail A., Ahmad R., Bennakhi A., Al-Arouj M., Behbehani K., Dehbi M., Dermime S. IL-33 is negatively associated with the BMI and confers a protective lipid/metabolic profile in non-diabetic but not diabetic subjects. BMC Immunol., 2014, Vol. 15, p. 19.
16. Iikura M., Suto H., Kajiwara N., Oboki K., Ohno T., Okayama Y., Saito H., Galli S.J., Nakae S. IL-33 can promote survival adhesion and cytokine production in human mast cells. Lab. Invest., 2007, Vol. 87, pp. 971-978.
17. Kakkar R., Lee R.T. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat. Rev. Drug Discov., 2008, Vol. 7, no. 10, pp. 827-840.
18. Kurowska-Stolarska M., Stolarski B., Kewin P., Murphy G., Corrigan C.J., Ying S., Pitman N., Mirchandani A., Rana B., van Rooijen N., Shepherd M., McSharry C., McInnes I.B., Xu D., Liew F.Y. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol., 2009, Vol. 183, no. 10, pp. 6469-6477.
19. Lax A., Sanchez-MasJ., Asensio-Lopez M.C., Fernandez-Del Palacio M.J., Caballero L., Garrido I.P., Pastor-Perez F.J., Januzzi J.L., Pascual-Figal D.A. Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail., 2015, Vol. 3, no. 1, pp. 50-58.
20. Lee U.E., Friedman S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol., 2011, Vol. 25, no. 2, pp. 195-206.
21. Li D., Guabiraba R., Besnard A.G., Komai-Koma M., Jabir M.S., Zhang L., Graham G.J., KurowskaStolarska M., Liew F.Y., McSharry C., Xu D. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol., 2014, Vol. 134, no. 6, pp. 1422-1432.
22. Li J., Razumilava N., Gores G.J., Walters S., Mizuochi T., Mourya R., Bessho K., Wang Y.H., Glaser S.S., Shivakumar P., Bezerra J.A. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J. Clin. Invest., 2014, Vol. 124, no. 7, pp. 3241-3251.
23. Liew F.Y., Pitman N.I., McInnes I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol., 2010, Vol. 10, pp. 103-110.
24. Luzina I.G., Kopach P., Lockatell V., Kang P.H., Nagarsekar A., Burke A.P., Hasday J.D., Todd N.W., Atamas S.P. Interleukin-33 potentiates bleomycin-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2013, Vol. 49, no. 6, pp. 999-1008.
25. Manetti M., Ibba-Manneschi L., Liakouli V., Guiducci S., Milia A.F., Benelli G., Marrelli A., Conforti M.L., Romano E., Giacomelli R., Matucci-Cerinic M., Cipriani P. The IL-1-like cytokine IL-33 and its receptor ST2 are abnormally expressed in the affected skin and visceral organs of patients with systemic sclerosis. Ann. Rheum. Dis., 2010, Vol. 69, no. 3, pp. 598-605.
26. Marvie P., Lisbonne M., L’helgoualc’h A., Rauch M., Turlin B., Preisser L., Bourd-Boittin K., Théret N., Gascan H., Piquet-Pellorce C., Samson M. Interleukin-33 over expression is associated with liver fibrosis in mice and humans. J. Cell. Mol. Med., 2010, Vol. 14, no. 6B, pp. 1726-1739.
27. McHedlidze T., Waldner M., Zopf S., Walker J., Rankin A.L., Schuchmann M., Voehringer D., McKenzie A.N., Neurath M.F., Pflanz S., Wirtz S. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity, 2013, Vol. 39, pp. 357-371.
28. McLaren J.E., Michael D.R., Salter R.C., Ashlin T.G., Calder C.J., Miller A.M., Liew F.Y., Ramji D.P. IL-33 reduces macrophage foam cell formation. J. Immunol., 2010, Vol. 185, no. 2, pp. 1222-1229.
29. Miller A.M., Xu D., Asquith D.L., Denby L., Li Y., Sattar N., Baker A.H., McInnes I.B., Liew F.Y. IL-33 reduces the development of atherosclerosis. J. Exp. Med., 2008, Vol. 205, no. 2, pp. 339-346.
30. Mirchandani A.S., Salmond R.J., Liew F.Y. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol., 2012, Vol. 33, pp. 389-396.
31. Oboki K., Nakae S., Matsumoto K., Saito H. IL-33 and airway inflammation. Allergy, Asthma Immunol. Res., 2011, Vol. 3, no. 2, pp. 81-88.
32. Oboki K., Ohno T., Kajiwara N., Saito H., Nakae S. IL-33 and IL-33 receptors in host defense and diseases. Allergology International, 2010, Vol. 59, pp. 143-160.
33. Ohno T., Oboki K., Morita H., Kajiwara N., Arae K., Tanaka S., Ikeda M. Paracrine IL-33 stimulation enhances lipopolysaccharide-mediated macrophage activation. PLoS ONE, 2011, Vol. 6, no. 4, e18404. doi: 10.1371/ journal.pone.0018404.
34. Palmer G., Lipsky B.P., Smithgall M.D., Meininger D., Siu S., Talabot-Ayer D., Gabay C., Smith D.E. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine, 2008, Vol. 42, pp. 358-364.
35. Pei C., Barbour M., Fairlie-Clarke K.J., Allan D., Mu R., Jiang H.R. Emerging role of interleukin-33 in autoimmune diseases. Immunology, 2014, Vol. 141, pp. 9-17.
36. Raghu G., Selman M. Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am. J. Respir. Crit. Care Med., 2015, Vol. 191, no. 3, pp. 252-254.
37. Rankin A.L., Mumm J.B., Murphy E., Turner S., Yu N., McClanahan T.K., Bourne P.A., Pierce R.H., Kastelein R., Pflanz S. IL-33 induces IL-13-dependent cutaneous fibrosis. J. Immunol., 2010, Vol. 184, no. 3, pp. 1526-1535.
38. Saluja R., Khan M., Church M.K., Maurer M. The role of IL-33 and mast cells in allergy and inflammation. Clin. Transl. Allergy, 2015, Vol. 5, p. 33.
39. Sanada S., Hakuno D., Higgins L.J., Schreiter E.R., McKenzie A.N., Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest., 2007, Vol. 117, pp. 1538-1549.
40. Sánchez-Más J., Lax A., Asensio-López M.C., Fernandez-Del Palacio M.J., Caballero L., Santarelli G., Januzzi J.L., Pascual-Figal D.A. Modulation of IL-33/ST2 system in postinfarction heart failure: correlation with cardiac remodelling markers. Eur. J. Clin. Invest., 2014, Vol. 44, no. 7, pp. 643-651.
41. Schmitz J., Owyang A., Oldham E., Song Y., Murphy E., McClanahan T.K., Zurawski G., Moshrefi M., Qin J., Li X., Gorman D.M., Bazan J.F., Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, Vol. 23, pp. 479-490.
42. Seki K., Sanada S., Kudinova A.Y., Steinhauser M.L., Handa V., Gannon J., Lee R.T. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ. Heart Fail., 2009, Vol. 2, no. 6, pp. 684-691.
43. Silver M.R., Margulis A., Wood N., Goldman S.J., Kasaian M., Chaudhary D. IL-33 synergizes with IgEdependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm. Res., 2010, Vol. 59, pp. 207-218.
44. Smithgall M.D., Comeau M.R., Yoon B.R., Kaufman D., Armitage R., Smith D.E. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol., 2008, Vol. 20, pp. 1019-1030.
45. Tago K., Noda T., Hayakawa M., Iwahana H., Yanagisawa K., Yashiro T., Tominaga S. Tissue distribution and subcellular localization of a variant form of the human ST2 gene product, ST2V. Biochem. Biophys. Res. Commun., 2001, Vol. 285, no. 5, pp. 1377-1383.
46. Wasserman A., Ben-Shoshan J., Entin-Meer M., Maysel-Auslender S., Guzner-Gur H., Keren G. Interleukin-33 augments Treg cell levels: a flaw mechanism in atherosclerosis. Isr. Med. Assoc. J., 2012, Vol. 14, no. 10, pp. 620-623.
47. Wollin L., Maillet I., Quesniaux V., Holweg A., Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J. Pharmacol. Exp. Ther., 2014, Vol. 349, no. 2, pp. 209-220.
48. Wynn T.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest., 2007, Vol. 117, pp. 524-529.
49. Xu H., Turnquist H.R., Hoffman R., Billia T.R. Role of the IL-33-ST2 axis in sepsis. Mil. Med. Res., 2017, Vol. 4, p. 3.
50. Xu W.D., Zhang M., Zhang Y.J., Ye D.Q. IL-33 in rheumatoid arthritis: potential role in pathogenesis and therapy. Hum. Immunol., 2013, Vol. 74, no. 9, pp. 1057-1060.
51. Zhu J., Carver W. Effects of interleukin-33 on cardiac fibroblast gene expression and activity. Cytokine, 2012, Vol. 58, no. 3, pp. 368-379.
Review
For citations:
Uchasova E.G., Gruzdeva O.V., Dileva Yu.A., Karetnikova V.N. INTERLEUKIN 33 AND FIBROSIS: PATHOGENESIS UPDATED. Medical Immunology (Russia). 2018;20(4):477-484. (In Russ.) https://doi.org/10.15789/1563-0625-2018-4-477-484