Preview

Медицинская иммунология

Расширенный поиск

ХАРАКТЕРИСТИКА И РОЛЬ РАЗЛИЧНЫХ ПОПУЛЯЦИЙ МАКРОФАГОВ В ПАТОГЕНЕЗЕ ОСТРЫХ И ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ЛЕГКИХ

https://doi.org/10.15789/1563-0625-2017-6-657-672

Полный текст:

Аннотация

Макрофаги являются одной из самых многочисленных популяций клеток респираторного тракта, отличающейся способностью приобретать разнообразные фенотипы, в зависимости от сигналов микроокружения (классически активированные М1, альтернативно активированные М2). Есть все основания полагать, что различные популяции макрофагов принимают участие как в защите организма от инфекционных патогенов, так и в предотвращении неконтролируемого воспаления в тканях. Изменение фенотипов макрофагов в легких характерно для многих заболеваний респираторного тракта, включая бронхиальную астму, хроническую обструктивную болезнь легких, легочный фиброз и инфекционные заболевания. В данном литературном обзоре мы сфокусировались на биологии, происхождении и характеристике известных фенотипов макрофагов, а также представили современные данные об их роли в развитии хронических заболеваний легких – бронхиальной астмы и хронической обструктивной болезни легких, а также острых заболеваний бактериальной и вирусной природы.

Об авторах

А. А. Никонова
ФГБУ «ГНЦ Институт иммунологии» ФМБА России; ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Россия

к.б.н., заведующая лабораторией молекулярной биотехнологии ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»; ФГБУ «ГНЦ Институт иммунологии» ФМБА России

115478, Россия, Москва, Каширское шоссе, 24/2



М. Р. Хаитов
ФГБУ «ГНЦ Институт иммунологии» ФМБА России
Россия

д.м.н., профессор, член-корреспондент РАН, исполняющий обязанности директора ФГБУ «ГНЦ Институт иммунологии» ФМБА России

115478, Россия, Москва, Каширское шоссе, 24/2



Р. М. Хаитов
ФГБУ «ГНЦ Институт иммунологии» ФМБА России
Россия

д.м.н., профессор, академик РАН, научный руководитель ФГБУ «ГНЦ Институт иммунологии» ФМБА России

115478, Россия, Москва, Каширское шоссе, 24/2



Список литературы

1. Никонова А.А., Атауллаханов Р.И., Хаитов Р.М., Хаитов М.Р. Особенности противовирусной активности разных типов человеческих макрофагов // Иммунология, 2016. Т. 37, № 11. С. 300-305. [Nikonova A.A., Ataullakhanov R.I., Khaitov R.M., Khaitov M.R. Antiviral activity of different types of human macrophages. Immunologiya = Immunology, 2016, Vol. 37, no. 1, pp. 300-305. (In Russ.)]

2. Хаитов М.Р., Акимов В.С. Генетическая предрасположенность к развитию бронхиальной астмы и атопии, подходы к идентификации новых генов, ассоциированных с развитием бронхиальной астмы и атопии // Российский аллергологический журнал, 2004. № 3. С. 67-74. [Khaitov M.R., Akimov V.S. Genetic predisposition to the development of bronchial asthma and atopy, approaches to identifying new genes associated with the development of bronchial asthma and atopy. Rossiyskiy allergologicheskiy zhurnal = Russian Allergology Journal, 2004, no. 3, pp. 67-74. (In Russ.)]

3. Царев С.В., Хаитов М.Р. Роль респираторных вирусов при бронхиальной астме // Российский медицинский журнал, 2009. № 2. С. 136-139. [Tsarev S.V., Khaitov M.R. The role of respiratory viruses in bronchial asthma. Rossiyskiy meditsinskiy zhurnal = Medical Journal of the Russian Federation, 2009, no. 2, pp. 136-139. (In Russ.)]

4. Aguzzi A., Barres B.A., Bennett M.L. Microglia: scapegoat, saboteur, or something else? Science, 2013, Vol. 339, no. 6116, pp. 156-161.

5. Arnold L., Henry A., Poron F., Baba-Amer Y., van Rooijen N., Plonquet A., Gherardi R.K., Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med., 2007, Vol. 204, no. 5, pp. 1057-1069.

6. Arora S., Hernandez Y., Erb-Downward J.R., McDonald R.A., Toews G.B., Huffnagle G.B. Role of IFNgamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol., 2005, Vol. 174, no. 10, pp. 6346-6356.

7. Auffray C., Fogg D., Garfa M., Elain G., Join-Lambert O., Kayal S., Sarnacki S., Cumano A., Lauvau G., Geissmann F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 2007, Vol. 317, no. 5838, pp. 666-670.

8. Barrecheguren M., Esquinas C., Miravitlles M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr. Opin. Pulm. Med., 2015, Vol. 21, no. 1, pp. 74-79.

9. Bastard J.P., Maachi M., Lagathu C., Kim M.J., Caron M., Vidal H., Capeau J., Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw., 2006, Vol. 17, no. 1, pp. 4-12.

10. Bazzan E., Turato G., Tinè M., Radu C.M., Balestro E., Rigobello C., Biondini D., Schiavon M., Lunardi F., Baraldo S., Rea F., Simioni P., Calabrese F., Saetta M., Cosio M.G. Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respir. Res., 2017, Vol. 18, no. 1, p. 40.

11. Becker M., de Bastiani M.A., Parisi M.M., Guma F.T., Markoski M.M., Castro M.A., Kaplan M.H., Barbé-Tuana F.M., Klamt F. Integrated Transcriptomics Establish Macrophage Polarization Signatures and have Potential Applications for Clinical Health and Disease. Sci. Rep., 2015, Vol. 5, p. 13351.

12. Bedoret D., Wallemacq H., Marichal T., Desmet C., Quesada Calvo F., Henry E., Closset R., Dewals B., Thielen C., Gustin P., de Leval L., van Rooijen N., le Moine A., Vanderplasschen A., Cataldo D., Drion P.V., Moser M., Lekeux P., Bureau F. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest., 2009, Vol. 119, no. 12, pp. 3723-3738.

13. Benoit M., Desnues B., Mege J.L. Macrophage polarization in bacterial infections. J. Immunol., 2008, Vol. 181, no. 6, pp. 3733-3739.

14. Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 2010, Vol. 11, no. 10, pp. 889-896.

15. Biswas S.K., Mantovani A. Orchestration of metabolism by macrophages. Cell Metab., 2012, Vol. 15, no. 4, pp. 432-437.

16. Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol., 2009, Vol. 30, no. 10, pp. 475-487.

17. Byers D.E., Holtzman M.J. Alternatively activated macrophages and airway disease. Chest, 2011, Vol. 140, no. 3, pp. 768-774.

18. Byrne A.J., Mathie S.A., Gregory L.G., Lloyd C.M. Pulmonary macrophages: key players in the innate defence of the airways. Thorax, 2015, Vol. 70, no. 12, pp. 1189-1196.

19. Carlin L.M., Stamatiades E.G., Auffray C., Hanna R.N., Glover L., Vizcay-Barrena G., Hedrick C.C., Cook H.T., Diebold S., Geissmann F. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell, 2013, Vol. 153, no. 2, pp. 362-375.

20. Chávez-Galán L., Olleros M.L., Vesin D., Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front. Immunol., 2015, Vol. 6, p. 263.

21. Chupp G.L., Lee C.G., Jarjour N., Shim Y.M., Holm C.T., He S., Dziura J.D., Reed J., Coyle A.J., Kiener P., Cullen M., Grandsaigne M., Dombret M.C., Aubier M., Pretolani M., Elias J.A. A chitinase-like protein in the lung and circulation of patients with severe asthma. N. Engl. J. Med., 2007, Vol. 357, no. 20, pp. 2016-2027.

22. de Nadaï P., Charbonnier A.S., Chenivesse C., Sénéchal S., Fournier C., Gilet J., Vorng H., Chang Y., Gosset P., Wallaert B., Tonnel A.B., Lassalle P., Tsicopoulos A. Involvement of CCL18 in allergic asthma. J. Immunol., 2006, Vol. 176, no. 10, pp. 6286-6293.

23. Decramer M., Janssens W., Miravitlles M. Chronic obstructive pulmonary disease. Lancet, 2012, Vol. 379, no. 9823, pp. 1341-1351.

24. den Haan J.M., Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun., 2012, Vol. 4, no. 5-6, pp. 437-445.

25. Dong L., Wang S.J., Camoretti-Mercado B., Li H.J., Chen M., Bi W.X. FIZZ1 plays a crucial role in early stage airway remodeling of OVA-induced asthma. J. Asthma, 2008, Vol. 45, no. 8, pp. 648-653.

26. Donnelly L.E., Barnes P.J. Defective phagocytosis in airways disease. Chest, 2012, Vol. 141, no. 4, pp. 1055-1062.

27. Draijer C., Robbe P., Boorsma C.E., Hylkema M.N., Melgert B.N. Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma. Mediators Inflamm., 2013, Vol. 2013, p. 632049.

28. Draijer C., Boorsma C.E., Robbe P., Timens W., Hylkema M.N., Ten Hacken N.H., van den Berge M., Postma D.S., Melgert B.N. Human asthma is characterized by more IRF5+ M1 and CD206+ M2 macrophages and less IL-10+ M2-like macrophages around airways compared with healthy airways. J. Allergy Clin. Immunol., 2016, Vol. 140, no. 1, pp. 280-283.

29. Durham A.L., Caramori G., Chung K.F., Adcock I.M. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl. Res., 2016, Vol. 167, no. 1, pp. 192-203.

30. Fenyo I.M., Gafencu A.V. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology, 2013, Vol. 218, no. 11, pp. 1376-1384.

31. Fleming B.D., Mosser D.M. Regulatory macrophages: setting the threshold for therapy. Eur. J. Immunol., 2011, Vol. 41, no. 9, pp. 2498-2502.

32. Fraig M., Shreesha U., Savici D., Katzenstein A.L. Respiratory bronchiolitis: a clinicopathologic study in current smokers, ex-smokers, and never-smokers. Am. J. Surg. Pathol., 2002, Vol. 26, no. 5, pp. 647-653.

33. Franks T.J., Chong P.Y., Chui P., Galvin J.R., Lourens R.M., Reid A.H., Selbs E., McEvoy C.P., Hayden C.D., Fukuoka J., Taubenberger J.K., Travis W.D. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol., 2003, Vol. 34, no. 8, pp. 743-748.

34. Geissmann F., Jung S., Littman D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 2003, Vol. 19, no. 1, pp. 71-82.

35. Herbein G., Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology, 2010, Vol. 7, p. 33.

36. Herold S., Steinmueller M., von Wulffen W., Cakarova L., Pinto R., Pleschka S., Mack M., Kuziel W.A., Corazza N., Brunner T., Seeger W., Lohmeyer J. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J. Exp. Med., 2008, Vol. 205, no. 13, pp. 3065-3077.

37. Hodge S., Matthews G., Mukaro V., Ahern J., Shivam A., Hodge G., Holmes M., Jersmann H., Reynolds P.N. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am. J. Respir. Cell Mol. Biol., 2011, Vol. 44, no. 5, pp. 673-681.

38. Hogg J.C., Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev. Pathol., 2009, Vol. 4, pp. 435-459.

39. Hong J.Y., Chung Y., Steenrod J., Chen Q., Lei J., Comstock A.T., Goldsmith A.M., Bentley J.K., Sajjan U.S., Hershenson M.B. Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma. Respir. Res., 2014, Vol. 15, p. 63.

40. Hubeau C., Puchelle E., Gaillard D. Distinct pattern of immune cell population in the lung of human fetuses with cystic fibrosis. J. Allergy Clin. Immunol., 2001, Vol. 108, no. 4, pp. 524-529.

41. Ingersoll M.A., Spanbroek R., Lottaz C., Gautier E.L., Frankenberger M., Hoffmann R., Lang R., Haniffa M., Collin M., Tacke F., Habenicht A.J., Ziegler-Heitbrock L., Randolph G.J. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood, 2010, Vol. 115, no. 3, pp. e10-9.

42. Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol., 2014, Vol. 5, p. 514.

43. Jackson A.D. Airway goblet-cell mucus secretion. Trends Pharmacol. Sci, 2001, Vol. 22, no. 1, pp. 39-45.

44. Jackson D.J., Makrinioti H., Rana B.M., Shamji B.W., Trujillo-Torralbo M.B., Footitt J., Jerico Del-Rosario, Telcian A.G., Nikonova A., Zhu J., Aniscenko J., Gogsadze L., Bakhsoliani E., Traub S., Dhariwal J., Porter J., Hunt D., Hunt T., Stanciu L.A., Khaitov M., Bartlett N.W., Edwards M.R., Kon O.M., Mallia P., Papadopoulos N.G., Akdis C.A., Westwick J., Edwards M.J., Cousins D.J., Walton R.P., Johnston S.L. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am. J. Respir. Crit. Care Med., 2014, Vol. 190, no. 12, pp. 1373-1382.

45. Jenner R.G., Young R.A. Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol., 2005, Vol. 3, no. 4, pp. 281-294.

46. Jiang Z., Zhu L. Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy, 2016, Vol. 9, pp. 101-107.

47. Joshi A.D., Oak S.R., Hartigan A.J., Finn W.G., Kunkel S.L., Duffy K.E., Das A., Hogaboam C.M. Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol., 2010, Vol 11, p. 52.

48. Kim H.B. Protein microarray analysis in patients with asthma: elevation of the chemokine PARC/CCL18 in sputum. Chest, 2009, Vol. 135, no. 2, pp. 295-302.

49. Kiszewski A.E., Becerril E., Aguilar L.D., Kader I.T., Myers W., Portaels F., Hernàndez Pando R. The local immune response in ulcerative lesions of Buruli disease. Clin. Exp. Immunol., 2006, Vol. 143, no. 3, pp. 445-451.

50. Kurowska-Stolarska M., Stolarski B., Kewin P., Murphy G., Corrigan C.J., Ying S., Pitman N., Mirchandani A., Rana B., van Rooijen N., Shepherd M., McSharry C., McInnes I.B., Xu D., Liew F.Y. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol., 2009, Vol. 183, no. 10, pp. 6469-6477.

51. Labonte A.C., Tosello-Trampont A.C., Hahn Y.S. The role of macrophage polarization in infectious and inflammatory diseases. Mol. Cells, 2014, Vol. 37, no. 4, pp. 275-285.

52. Lambrecht B.N., Hammad H. The immunology of asthma. Nat. Immunol., 2015, Vol. 16, no.1, pp. 45-56.

53. Lin S.L., Castaño A.P., Nowlin B.T., Lupher M.L. Jr, Duffield J.S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol., 2009, Vol. 183, no. 10, pp. 6733-6743.

54. Lugo-Villarino G., Vérollet C., Maridonneau-Parini I., Neyrolles O. Macrophage polarization: convergence point targeted by mycobacterium tuberculosis and HIV. Front. Immunol., 2011, Vol. 2, p. 43.

55. Luzina I.G., Papadimitriou J.C., Anderson R., Pochetuhen K., Atamas S.P. Induction of prolonged infiltration of T lymphocytes and transient T lymphocyte-dependent collagen deposition in mouse lungs following adenoviral gene transfer of CCL18. Arthritis Rheum, 2006, Vol. 54, no. 8, pp. 2643-2655.

56. MacMicking J., Xie Q.W., Nathan C. Nitric oxide and macrophage function. Annu Rev. Immunol., 1997, Vol. 15, pp. 323-350.

57. Malavia N.K., Mih J.D., Raub C.B., Dinh B.T., George S.C. IL-13 induces a bronchial epithelial phenotype that is profibrotic. Respir. Res., 2008, Vol. 9, p. 27.

58. Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no. 11, pp. 549-555.

59. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep., 2014, Vol. 6, p. 13.

60. Melgert B.N., Oriss T.B., Qi Z., Dixon-McCarthy B., Geerlings M., Hylkema M.N., Ray A. Macrophages: regulators of sex differences in asthma? Am. J. Respir. Cell Mol. Biol., 2010, Vol. 42, no. 5, pp. 595-603.

61. Melgert B.N., ten Hacken N.H., Rutgers B., Timens W., Postma D.S., Hylkema M.N. More alternative activation of macrophages in lungs of asthmatic patients. J. Allergy Clin. Immunol., 2011, Vol. 127, no. 3, pp. 831-833.

62. Meyer K.C., Raghu G., Baughman R.P., Brown K.K., Costabel U., du Bois R.M., Drent M., Haslam P.L., Kim D.S., Nagai S., Rottoli P., Saltini C., Selman M., Strange C., Wood B. American Thoracic Society Committee on BAL in Interstitial Lung Disease. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med., 2012, Vol. 185, no. 9, pp. 1004-1014.

63. Mills C.D., Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun., 2014, Vol. 6, no. 6, pp. 716-726.

64. Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol., 2000, Vol. 164, no. 12, pp. 6166-6173.

65. Moreira A.P., Hogaboam C.M. Macrophages in allergic asthma: fine-tuning their pro- and anti-inflammatory actions for disease resolution. J. Interferon Cytokine Res., 2011, Vol. 31, no. 6, pp. 485-491.

66. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, Vol. 8, no. 12, pp. 958-969.

67. Murray P.J., Wynn T.A. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol., 2011, Vol. 89, no. 4, pp. 557-563.

68. Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, Vol. 11, no. 11, pp. 723-307.

69. Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F.O., Mege J.L., Mosser D.M., Natoli G., Saeij J.P., Schultze J.L., Shirey K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, Vol. 41, no. 1, pp. 14-20.

70. Mylonas K.J., Nair M.G., Prieto-Lafuente L., Paape D., Allen J.E. Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol., 2009, Vol. 182, no. 5, pp. 3084-3094.

71. Nabe T., Wakamori H., Yano C., Nishiguchi A., Yuasa R., Kido H., Tomiyama Y., Tomoda A., Kida H., Takiguchi A., Matsuda M., Ishihara K., Akiba S., Ohya S., Fukui H., Mizutani N., Yoshino S. Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. Eur. J. Pharmacol., 2015, Vol. 757, pp. 34-41.

72. Nagarkar D.R., Bowman E.R., Schneider D., Wang Q., Shim J., Zhao Y., Linn M.J., McHenry C.L., Gosangi B., Bentley J.K., Tsai W.C., Sajjan U.S., Lukacs N.W., Hershenson M.B. Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages. J. Immunol., 2010, Vol. 185, no. 4, pp. 2525-2535.

73. Nahrendorf M., Swirski F.K., Aikawa E., Stangenberg L., Wurdinger T., Figueiredo J.L., Libby P., Weissleder R., Pittet M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med., 2007, Vol. 204, no. 12, pp. 3037-3047.

74. O’Donnell R., Breen D., Wilson S., Djukanovic R. Inflammatory cells in the airways in COPD. Thorax, 2006, Vol. 61, no. 5, pp. 448-454.

75. Ofulue A.F., Ko M. Effects of depletion of neutrophils or macrophages on development of cigarette smokeinduced emphysema. Am. J. Physiol., 1999, Vol. 277, no. 1, Pt 1, pp. L97-105.

76. Page C., Goicochea L., Matthews K., Zhang Y., Klover P., Holtzman M.J., Hennighausen L., Frieman M. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J. Virol., 2012, Vol. 86, no. 24, pp. 13334-13349.

77. Pesce J.T., Ramalingam T.R., Mentink-Kane M.M., Wilson M.S., El Kasmi K.C., Smith A.M., Thompson R.W., Cheever A.W., Murray P.J., Wynn T.A. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog, 2009, Vol. 5, no. 4, e1000371. doi: 10.1371/journal.ppat.1000371.

78. Pope S.M., Fulkerson P.C., Blanchard C., Akei H.S., Nikolaidis N.M., Zimmermann N., Molkentin J.D., Rothenberg M.E. Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. J. Biol. Chem., 2005, Vol. 280, no. 14, pp. 13952-13961.

79. Retamales I., Elliott W.M., Meshi B., Coxson H.O., Pare P.D., Sciurba F.C., Rogers R.M., Hayashi S., Hogg J.C. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am. J. Respir. Crit. Care Med., 2001, Vol. 164, no. 3, pp. 469-473.

80. Robbe P., Draijer C., Borg T.R., Luinge M., Timens W., Wouters I.M., Melgert B.N., Hylkema M.N. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation. Am. J. Physiol. Lung Cell Mol. Physiol., 2015, Vol. 308, no. 4, pp. L358-67.

81. Roszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm., 2015, Vol. 2015, p. 816460.

82. Sang Y., Miller L.C., Blecha F. Macrophage Polarization in Virus-Host Interactions. J. Clin. Cell Immunol., 2015, Vol. 6, no. 2, pp. 1-23.

83. Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., Kumagai Y., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K., Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K., Nakai K., Akira S. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol., 2010, Vol. 11, no. 10, pp. 936-944.

84. Schneberger D.,Aharonson-Raz K., Singh B. Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell Tissue Res., 2011, Vol. 343, no. 1, pp. 97-106.

85. Shaykhiev R., Krause A., Salit J., Strulovici-Barel Y., Harvey B.G., O’Connor T.P., Crystal R.G. Smokingdependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J. Immunol., 2009, Vol. 183, no. 4, pp. 2867-2883.

86. Shibata Y., Berclaz P.Y., Chroneos Z.C., Yoshida M., Whitsett J.A., Trapnell B.C. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity, 2001, Vol. 15, no. 4, pp. 557-567.

87. Shirey K.A., Pletneva L.M., Puche A.C., Keegan A.D., Prince G.A., Blanco J.C., Vogel S.N. Control of RSVinduced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal Immunol., 2010, Vol. 3, no. 3, pp. 291-300.

88. Shirey K.A., Lai W., Pletneva L.M., Karp C.L., Divanovic S., Blanco J.C., Vogel S.N. Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol., 2014, Vol. 7, no. 3, pp. 549-557.

89. Staples K.J., Hinks T.S., Ward J.A., Gunn V., Smith C., Djukanović R. Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17. J. Allergy Clin. Immunol., 2012, Vol. 130, no. 6, pp. 1404-12.е7.

90. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med., 1992, Vol. 176, no. 1, pp. 287-292.

91. Sun H., Sun Y., Pu J., Zhang Y., Zhu Q., Li J., Gu J., Chang K.C., Liu J. Comparative virus replication and host innate responses in human cells infected with three prevalent clades (2.3.4, 2.3.2, and 7) of highly pathogenic avian influenza H5N1 viruses. J. Virol., 2014, Vol. 88, no. 1, pp. 725-729.

92. Tarique A.A., Logan J., Thomas E., Holt P.G., Sly P.D., Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, Vol. 53, no. 5, pp. 676-688.

93. Tate M.D., Pickett D.L., van Rooijen N., Brooks A.G., Reading P.C. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J. Virol., 2010, Vol. 84, no. 15, pp. 7569-7580.

94. Teijaro J.R. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc. Natl. Acad. Sci USA, 2014, Vol. 111, no. 10, pp. 3799-3804.

95. Tsou C.L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest., 2007, Vol. 117, no. 4, pp. 902-909.

96. Verreck F.A., de Boer T., Langenberg D.M., Hoeve M.A., Kramer M., Vaisberg E., Kastelein R., Kolk A., de Waal-Malefyt R., Ottenhoff T.H. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci USA, 2004, Vol. 101, no. 13, pp. 4560-4565.

97. Verreck F.A., de Boer T., Langenberg D.M., van der Zanden L., Ottenhoff T.H. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J. Leukoc. Biol., 2006, Vol. 79, no. 2, pp. 285-293.

98. Vlahos R., Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front. Immunol., 2014, Vol. 5, p. 435.

99. Welliver R.C., Sr. The immune response to respiratory syncytial virus infection: friend or foe? Clin. Rev. Allergy Immunol., 2008, Vol. 34, no. 2, pp. 163-173.

100. Wong C.K., Leung T.F., Chu I.M., Dong J., Lam Y.Y., Lam C.W. Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma. Inflammation, 2015, Vol. 38, no. 1, pp. 348-360.

101. Woodruff P.G., Koth L.L., Yang Y.H., Rodriguez M.W., Favoreto S., Dolganov G.M., Paquet A.C., Erle D.J. A distinctive alveolar macrophage activation state induced by cigarette smoking. Am. J. Respir. Crit. Care Med., 2005, Vol. 172, no. 11, pp. 1383-1392.

102. Xu F., Kang Y., Zhang H., Piao Z., Yin H., Diao R., Xia J., Shi L. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. J. Infect. Dis., 2013, Vol. 208, no. 3, pp. 528-538.

103. Yona S., Kim K.W., Wolf Y., Mildner A., Varol D., Breker M., Strauss-Ayali D., Viukov S., Guilliams M., Misharin A., Hume D.A., Perlman H., Malissen B., Zelzer E., Jung S. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 2013, Vol. 38, no. 1, pp. 79-91.

104. Zhao J., van Rooijen N., Perlman S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS Pathog, 2009, Vol. 5, no. 10, e1000636. doi: 10.1371/journal.ppat.1000636.

105. Zhao X., Dai J., Xiao X., Wu L., Zeng J., Sheng J., Su J., Chen X., Wang G., Li K. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS One, 2014, Vol. 9, no. 8, e104506. doi: 10.1371/journal.pone.0104506.

106. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-80.


Для цитирования:


Никонова А.А., Хаитов М.Р., Хаитов Р.М. ХАРАКТЕРИСТИКА И РОЛЬ РАЗЛИЧНЫХ ПОПУЛЯЦИЙ МАКРОФАГОВ В ПАТОГЕНЕЗЕ ОСТРЫХ И ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ЛЕГКИХ. Медицинская иммунология. 2017;19(6):657-672. https://doi.org/10.15789/1563-0625-2017-6-657-672

For citation:


Nikonova A.A., Khaitov M.R., Khaitov R.M. CHARACTERISTICS AND ROLE OF MACROPHAGES IN PATHOGENESIS OF ACUTE AND CHRONIC LUNG DISEASES. Medical Immunology (Russia). 2017;19(6):657-672. (In Russ.) https://doi.org/10.15789/1563-0625-2017-6-657-672

Просмотров: 350


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)