POTENTIAL USAGE OF NK CELLS AND NKG2D-POSITIVE LYMPHOCYTES AS TARGETS IN THERAPY OF CROHN’S DISEASE
https://doi.org/10.15789/1563-0625-2017-4-461-470
Abstract
Autoimmune mechanisms of Crohn’s disease have been extensively studied, following discovery of NOD2, ATG16L1, IRGM genetic polymorphisms associated with Crohn’s disease. These genes play an important role in innate immune response against intracellular bacteria, in particular, due to their direct participation in a process known as autophagy. Due to mentioned genetic traits, the CD patients are more susceptible to chronic infections caused by intracellular pathogens. Recent studies revealed high incidence of intracellular infection with Mycobacterium paratuberculosis and E. coli in the intestinal tissue specimens and blood macrophages obtained from the CD patients. Such a chronic, non-resolved infection may disturb the immune cell properties and affect the balance of pro-inflammatory and anti-inflammatory cytokines, thus resulting into chronic inflammation, a hallmark of Crohn disease.
In this view, potential usage of NK cells aimed for influencing macrophage activity represents a new approach in understanding and treatment of autoimmune pathologies. The macrophages are controlled by NK cells. I.e., binding of NKG2D receptor to the MICA molecules on the macrophage surface causes their lysis.
A signal transfer via NKG2D receptor may increase functional activity of NK against defective macrophages, and hence, promote their elimination. Moreover, in Crohn patients with usually elevated NKG2D+ lymphocyte numbers, a stimulation of NKG2D+ cells by soluble MICA (sMICA) may influence the balance between cytotoxic and regulatory lymphocytes, and reduce pro-inflammatory cytokine secretion, in order to attenuate chronic inflammation of gut tissues. This review is aimed to discuss a role of NKG2D+ NK cells in Crohn’s disease pathology and their possible implications for management and treatment of this disorder.
About the Authors
E. A. ShuleninaRussian Federation
Shulenina Ekaterina A. - Junior Research Associate, Laboratory of Molecular Immunology, Dmitry Rogachev FRC PHOI; Student, First Moscow I.M. Sechenov SMU.
117133, Moscow, Teply Stan 21, bldg 1, apt 232. Phone: 7 (915) 216-09-46
E. V. Abakushina
Russian Federation
PhD (Medicine), Senior Research Associate, Laboratory of Clinical Immunology.
Moscow
E. Yu. Lyssuk
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Gene Therapy IGB RAS; Senior Research Associate, Laboratory of Molecular Immunology, Dmitry Rogachev FRC PHOI; Senior Research Associate, Laboratory of Molecular Oncology, Pirogov R NRMU.
MoscowReferences
1. Абакушина Е.В. Роль стресс-индуцированных молекул MICA/B в противоопухолевом иммунном ответе // Злокачественные опухоли, 2012. T. 2, № 2. С. 103-105. [Abakushina E.V. The role of stress-induced molecules MICA/B in the anti-tumor immune response. Zlokachestvennyie opukholi = Malignant Tumors, 2012, Vol. 2, no. 2, pp. 103-105. (In Russ.)]
2. Абакушина Е.В., Абакушин Д.Н., Неприна Г.С., Пасова И.А., Бердов Б.А., Клинкова А.В., Коваленко Е.И., Каприн А.Д. Повышение уровня цитокинов и стресс-индуцированных молекул MICA в сыворотке крови больных раком желудка и толстой кишки // Цитокины и воспаление, 2015. Т. 14, № 1. С. 63-67. [Abakushina E.V., Abakushin D.N., Neprina G.S., Pasova I.A., Berdov B.A., Klinkova A.V., Kovalenko E.I., Kaprin A.D. Elevation of serum levels of cytokines and stress-induced molecules MICA in patients with gaster and colon cancer. Tsitokiny i vospalenie = Cytokines and Inflammation, 2015, Vol. 14, no. 1, pp. 63-67. (In Russ.)]
3. Абакушина Е.В., Клинкова А.В., Каневский Л.М., Коваленко Е.И. Увеличение растворимых форм стресс-индуцированных молекул MICA при онкологических заболеваниях // Молекулярная медицина, 2014. № 3. С. 34-38. [Abakushina E.V., Klinkova A.V., Kanevskiy L.M., Kovalenko E.I. Elevation of serum levels of soluble forms of stress-induced molecules MICA in oncological diseases. Molekulyarnaya meditsina = Molecular Medicine, 2014, no. 3, pp. 34-38. (In Russ.)]
4. Абакушина Е.В., Маризина Ю.В., Пасова И.А., Козлов И.Г., Каприн А.Д. Критерии отбора пациентов больных меланомой для иммунотерапии активированными лимфоцитами на основе исходного уровня стресс-индуцированных молекул MICA // Медицинская иммунология, 2015. Т. 17, Специальный выпуск, № 3. С. 153-154. [Abakushina E.V., Marizina J.V., Pasova I.A., Kozlov I.G., Kaprin A.D. Selection criteria for patients with melanoma for immunotherapy by activated lymphocytes based on initial level of stress-induced molecules MICA. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, Vol. 17, no. 3s, pp. 153-154. (In Russ.)]
5. Закеева И.Р., Бережной А.Е., Гнучев Н.В., Георгиев Г.П. Ларин С.С. Ингибиторные рецепторы лимфоцитов и их роль в противоопухолевом иммунитете // Вопросы онкологии, 2007. Т. 2, № 53. С. 140-149. [Zakeyeva I.R., Bereznoy A.E., Gnuchev N.V., Georgiev G.P. Lymphocyte inhibitory receptors functioning in antitumor immune response. Voprosy oncologii = Problems of Oncology, 2007, Vol. 2, no. 53, pp. 140-149. (In Russ.)]
6. Agus A., Massier S., Darfeuille-Michaud A., Billard E., Barnich N. Understanding host-adherent-invasive Escherichia coli interaction in Crohn’s disease: opening up new therapeutic strategies. Biomed Res Int., 2014, Art. ID 567929, 16 p.
7. Allez M., Tieng V., Nakazawa A., Treton X., Pacault V., Dulphy N., Caillat-Zucman S., Paul P., Gornet J.M., Douay C., Ravet S., Tamouza R., Charron D., Lémann M., Mayer L., Toubert A. CD4+NKG2D+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology, 2007, Vol. 132, no. 7, pp. 2346-2358.
8. Baecher-Allan C., Hafler D.A. Human regulatory T cells and their role in autoimmune disease. Immunol. Rev., 2006, Vol. 212, pp. 203-216.
9. Barnich N., Carvalho F.A., Glasser A.L., Darcha C., Jantscheff P., Allez M., Peeters H., Bommelaer G., Desreumaux P., Colombel J.F., Darfeuille-Michaud A. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest., 2007, Vol. 117, no. 6, pp. 1566-1574.
10. Bauer S., Groh V., Wu J., Steinle A., Phillips J.H., Lanier L.L., Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 1999, Vol. 285, no. 5428, pp. 727-729.
11. Braunstein J., Qiao L., Autschbach F., Schürmann G., Meuer S. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut, 1997, Vol. 41, no. 2, pp. 215-220.
12. Camus M., Esses S., Pariente B., Le Bourhis L., Douay C., Chardiny V., Mocan I., Benlagha K., Clave E., Toubert A., Mayer L., Allez M. Oligoclonal expansions of mucosal T cells in Crohn’s disease predominate in NKG2Dexpressing CD4 T cells. Mucosal Immunol., 2014, Vol. 7, no. 2, pp. 325-334.
13. Conte M., Longhi C., Marazzato M., Conte A.L., Aleandri M., Lepanto M.S., Zagaglia C., Nicoletti M., Aloi M., Totino V., Palamara A.T., Schippa S. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn’s disease patients: phenotypic and genetic pathogenic features. BMC Res. Notes, 2014, Vol. 7, no. 1, p. 748.
14. Cooney R., Baker J., Brain O., Danis B., Pichulik T., Allan P., Ferguson D.J., Campbell B.J., Jewell D., Simmons A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med., 2010, Vol.16, no. 1, pp. 90-97.
15. Cuthbert A.P., Fisher S.A., Mirza M.M., King K., Hampe J., Croucher P.J., Mascheretti S., Sanderson J., Forbes A., Mansfield J., Schreiber S., Lewis C.M., Mathew C.G. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology, 2002, Vol. 122, no. 4, pp. 867-874.
16. González S., Groh V., Spies T. Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol., 2006, Vol. 298, no. 121-138.
17. Groh V., Smythe K., Dai Z., Spies T. Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nat. Immunol., 2006, Vol. 7, no. 7, pp. 755-762.
18. Groh V., Wu J., Yee C., Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, Vol. 419, no. 6908, pp. 734-738.
19. Hall L.J., Murphy C.T., Quinlan A., Hurley G., Shanahan F., Nally K., Melgar S. Natural killer cells protect mice from DSS-induced colitis by regulating neutrophil function via the NKG2A receptor. Mucosal Immunol., 2013, Vol. 6, no. 5, pp. 1016-1026.
20. Henry S.C., Daniell X., Indaram M., Whitesides J.F., Sempowski G.D., Howell D., Oliver T., Taylor G.A. Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47). J. Immunol., 2007, Vol. 179, no. 10, pp. 6963-6972.
21. Heresbach D., Alexandre J.L., Branger B., Bretagne J.F., Cruchant E., Dabadie A., Dartois-Hoguin M., Girardot P.M., Jouanolle H., Kerneis J., Le Verger J.C., Louvain V., Politis J., Richecoeur M., Robaszkiewicz M., Seyrig J.A. Frequency and significance of granulomas in a cohort of incident cases of Crohn’s disease. Gut, 2005, Vol. 54, no. 2, pp. 215-222.
22. Inohara N., Ogura Y., Fontalba A., Gutierrez O., Pons F., Crespo J., Fukase K., Inamura S., Kusumoto S., Hashimoto M., Foster S.J., Moran A.P., Fernandez-Luna J.L., Nuñez G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem., 2003, Vol. 278, no. 8, pp. 5509-5512.
23. Jostins L., Ripke S., Weersma R.K., Duerr R.H., McGovern D.P., Hui K.Y., Lee J.C., Schumm L.P., Sharma Y., Anderson C.A., Essers J., Mitrovic M., Ning K., Cleynen I., Theatre E., Spain S.L., Raychaudhuri S., Goyette P., Wei Z., Abraham C., Achkar J.P., Ahmad T., Amininejad L., Ananthakrishnan A.N., Andersen V., Andrews J.M., Baidoo L., Balschun T., Bampton P.A., Bitton A., Boucher G., Brand S., Büning C., Cohain A., Cichon S., D’Amato M., De Jong D., Devaney K.L., Dubinsky M., Edwards C., Ellinghaus D., Ferguson L.R., Franchimont D., Fransen K., Gearry R., Georges M., Gieger C., Glas J., Haritunians T., Hart A., Hawkey C., Hedl M., Hu X., Karlsen T.H., Kupcinskas L., Kugathasan S., Latiano A., Laukens D., Lawrance I.C., Lees C.W., Louis E., Mahy G., Mansfield J., Morgan A.R., Mowat C., Newman W., Palmieri O., Ponsioen C.Y., Potocnik U., Prescott N.J., Regueiro M., Rotter J.I., Russell R.K., Sanderson J.D., Sans M., Satsangi J., Schreiber S., Simms L.A., Sventoraityte J., Targan S.R., Taylor K.D., Tremelling M., Verspaget H.W., De Vos M., Wijmenga C., Wilson D.C., Winkelmann J., Xavier R.J., Zeissig S., Zhang B., Zhang C.K., Zhao H., Silverberg M.S., Annese V., Hakonarson H., Brant S.R., Radford-Smith G., Mathew C.G., Rioux J.D., Schadt E.E., Daly M.J., Franke A., Parkes M., Vermeire S., Barrett J.C., Cho J.H. Hostmicrobe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, Vol. 491, no. 7422, pp. 119-124.
24. Kjellev S., Haase C., Lundsgaard D., Ursø B., Tornehave D., Markholst H. Inhibition of NKG2D receptor function by antibody therapy attenuates transfer-induced colitis in SCID mice. Eur. J. Immunol., 2007, Vol. 37, no. 5, pp. 1397-1406.
25. Kobayashi K.S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nuñez G., Flavell R.A. Nod2dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005, Vol. 307, no. 5710, pp. 731-734.
26. Lapaquette P., Bringer M-A., Darfeuille-Michaud A. Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol., 2012, Vol. 14, no. 6, pp. 791-807.
27. Lassen K.G., Kuballa P., Conway K.L., Patel K.K., Becker C.E., Peloquin J.M., Villablanca E.J., Norman J.M., Liu T.C., Heath R.J., Becker M.L., Fagbami L., Horn H., Mercer J., Yilmaz O.H., Jaffe J.D., Shamji A.F., Bhan A.K., Carr S.A., Daly M.J., Virgin H.W., Schreiber S.L., Stappenbeck T.S., Xavier R.J. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl. Acad. Sci., 2014, Vol. 111, no. 21, pp. 7741-7746.
28. Liverani E., Scaioli E., Cardamone C., Dal Monte P., Belluzzi A. Mycobacterium avium subspecies paratuberculosis in the etiology of Crohn’s disease, cause or epiphenomenon? World J. Gastroenterol., 2014, Vol. 20, no. 36, pp. 13060-13070.
29. MacMicking J.D., Taylor G.A., McKinney J.D. Immune control of tuberculosis by IFN-inducible LRG-47. Science, 2003, Vol. 302, no. 5645, pp. 654-659.
30. McCarroll S.A., Kuruvilla F.G., Korn J.M., Cawley S., Nemesh J., Wysoker A., Shapero M.H., de Bakker P.I., Maller J.B., Kirby A., Elliott A.L., Parkin M., Hubbell E., Webster T., Mei R., Veitch J., Collins P.J., Handsaker R., Lincoln S., Nizzari M., Blume J., Jones K.W., Rava R., Daly M.J., Gabriel S.B., Altshuler D. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet., 2008, Vol. 40, no. 10, pp. 1166-1174.
31. Miceli-Richard C., Lesage S., Rybojad M., Prieur A.M., Manouvrier-Hanu S., Häfner R., Chamaillard M., Zouali H., Thomas G., Hugot J.P. CARD15 mutations in Blau syndrome. Nat. Genet., 2001, Vol. 29, no. 1, pp. 19-20.
32. Mimouna S., Bazin M., Mograbi B., Darfeuille-Michaud A., Brest P., Hofman P., Vouret-Craviari V. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC). Autophagy, 2014, Vol. 10, no. 12, pp. 2333-2345.
33. Murai M., Turovskaya O., Kim G., Madan R., Karp C.L., Cheroutre H., Kronenberg M. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol., 2009, Vol. 10, no. 11, pp. 1178-1184.
34. Ogura Y., Lala S., Xin W., Smith E., Dowds T.A., Chen F.F., Zimmermann E., Tretiakova M., Cho J.H., Hart J., Greenson J.K., Keshav S., Nuñez G. Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut, 2003, Vol. 52, no. 11, pp. 1591-1597.
35. Pariente B., Mocan I., Camus M., Dutertre C.A., Ettersperger J., Cattan P., Gornet J.M., Dulphy N., Charron D., Lémann M., Toubert A., Allez M. Activation of the receptor NKG2D leads to production of Th17 cytokines in CD4+ T cells of patients with Crohn’s disease. Gastroenterology, 2011, Vol. 141, no. 1, pp. 217-226.
36. Salih H.R., Rammensee HH-G., Steinle A. Cutting Edge: Down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol., 2002, Vol. 169, no. 8, pp. 4098-4102.
37. Schulz U., Kreutz M., Multhoff G., Stoelcker B., Köhler M., Andreesen R., Holler E. Interleukin-10 promotes NK cell killing of autologous macrophages by stimulating expression of NKG2D ligands. Scand. J. Immunol., 2010, Vol. 72, no. 4, pp. 319-331.
38. Singh S.B., Davis A.S., Taylor G.A., Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 2006, Vol. 313, no. 5792, pp. 1438-1441.
39. Torraca V., Masud S., Spaink H.P., Meijer A.H. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis. Models Mech., 2014, Vol. 7, no. 7, pp. 785-797.
40. Travassos L.H., Carneiro L.A., Ramjeet M., Hussey S., Kim Y.G., Magalhães J.G., Yuan L., Soares F., Chea E., Le Bourhis L., Boneca I.G., Allaoui A., Jones N.L., Nuñez G., Girardin S.E., Philpott D.J. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol., 2010, Vol. 11, no. 1, pp. 55-62.
41. Waldhauer I., Steinle A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res., 2006, Vol. 66, no. 5, pp. 2520-2526.
42. Wedebye Schmidt E.G., Larsen H.L., Kristensen N.N., Poulsen S.S., Lynge Pedersen A.M., Claesson M.H., Pedersen A.E. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm. Bowel Dis., 2013. Vol. 19, no. 8, pp. 1567-1576.
43. Wehkamp J., Salzman N.H., Porter E., Nuding S., Weichenthal M., Petras R.E., Shen B., Schaeffeler E., Schwab M., Linzmeier R., Feathers R.W., Chu H., Lima H., Fellermann K., Ganz T., Stange E.F., Bevins S.L. Reduced Paneth cell – defensins in ileal Crohn’s disease. Proc. Natl. Acad. Sci., 2005, Vol. 102, no. 50, pp. 18129-18134.
44. Zhang C., Zhang J., Wei H., Tian Z. Imbalance of NKG2D and its inhibitory counterparts: How does tumor escape from innate immunity? Int. Immunopharmacol., 2005, Vol. 5, no. 7-8, pp. 1099-1111.
45. Zhang J., Xu Z., Zhou X., Zhang H., Yang N., Wu Y., Chen Y., Yang G., Ren T. Loss of expression of MHC class I-related chain A (MICA) is a frequent event and predicts poor survival in patients with hepatocellular carcinoma. Int. J. Clin. Exp. Pathol., 2014, Vol. 7, no. 6, pp. 3123-3131.
Review
For citations:
Shulenina E.A., Abakushina E.V., Lyssuk E.Yu. POTENTIAL USAGE OF NK CELLS AND NKG2D-POSITIVE LYMPHOCYTES AS TARGETS IN THERAPY OF CROHN’S DISEASE. Medical Immunology (Russia). 2017;19(4):461-470. (In Russ.) https://doi.org/10.15789/1563-0625-2017-4-461-470