PROINFLAMMATORY CYTOKINE PROFILE IN PATIENTS WITH DIFFERENT ALPHA-1-ANTITRYPSIN PHENOTYPES
https://doi.org/10.15789/1563-0625-2016-6-537-544
Abstract
Alpha-1-antitrypsin (A1AT) exerts a wide spectrum of protective effects, being focused on reduction of secondary injury in inflammation. Moreover, A1AT inhibits some serine proteases, and down-regulates production of proinflammatory cytokines. A number of known A1AT phenotypes is accompanied by affection of cytokine profile in inflammatory processes, thus increasing the risk of disorders associated with A1AT deficiency.
The aim of our study was to evaluate cytokine profiles in the patients with different A1AT phenotypes. Were collected eighty-six blood sera from the persons with suspected A1AT deficiency. The A1AT phenotypes
and concentrations were determined in these samples. The patients were divided into four groups, depending on their A1AT variants, i.e., PiMM, PiZZ, PiMZ and rare A1AT phenotypes. The serum levels of IFNγ, TNFα, IL-6, IL-8, and IL-17 were measured in these groups by means of ELISA technique.
The mean levels of IL-6 comprised 73.52±4.363 pg/ml in the patients with PiZZ phenotype, being higher than in cases of PiMM phenotype (45.61±8.01 pg/ml, p < 0.05). The IL-17 levels were also found to be increased in the groups with PiZZ and PiMZ phenotypes, as compared with PiMM phenotype (p < 0.001). The mean IL-17 values in the samples with PiZZ, PiMZ, and PiMM phenotypes were 80.13±13.56 pg/ml, 106.7±26.28 pg/ml and 42.73±18.52 pg/ml, respectively. Meanwhile, there were no significant differences in IL-8, IFNγ and TNFα levels among different A1AT phenotypes.
The results of this study let us conclude that the cytokine imbalance may be crucial to onset of diseases associated with A1AT deficiency.
About the Authors
M. Yu. PervakovaRussian Federation
Laboratory Doctor, Diagnostic Laboratory for Autoimmune Disorders, Research Center of Molecular Medicine
S. V. Lapin
Russian Federation
PhD (Medicine), Senior Research Associate, Head, Laboratory for Diagnostics of Autoimmune Diseases, Research Center of Molecular Medicine
E. A. Surkova
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory for Diagnostics of Autoimmune Diseases, Research Center of Molecular Medicine
O. Yu. Tkachenko
Russian Federation
Laboratory Assistant, Laboratory for Diagnostics of Autoimmune Diseases, Research Center of Molecular Medicine
A. I. Budkova
Russian Federation
Student,
V. I. Guseva
Russian Federation
Laboratory Assistant, Laboratory for Diagnostics of Autoimmune Diseases, Research Center of Molecular Medicine
O. N. Titova
Russian Federation
PhD, MD (Medicine), Professor, Director, Research Institute of Pulmonology
V. L. Emanuel
Russian Federation
PhD, MD (Medicine), Professor, Head, Department of Clinical Laboratory Diagnostics with a Course of Molecular Medicine
Areg A. Totolian
Russian Federation
PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Director
References
1. Шевченко О.П. Белки острой фазы воспаления. Лаборатория, 1996, № 1. С. 10-17. [Shevchenko O.P. Acute phase proteins. Laboratoriya = Laboratory, 1996, no. 1, pp. 10-17. (In Russ.])
2. Stoller J.K., Lacbawan F.L., Aboussouan L.S. Alpha-1 antitrypsin deficiency. Gene reviews, 2006.
3. Lockett A.D., van Demark M., Gu Y., Schweitzer K.S., Sigua N., Kamocki K., Fijalkowska I., Garrison J., Fisher A.J., Serban K., Wise R.A., Flotte T.R., Mueller C., Presson R.G.Jr., Petrache H.I., Tuder R.M., Petrache I. Effect of cigarette smoke exposure and structural modifications on the alpha-1 Antitrypsin interaction with caspases. Mol. Med., 2012, Vol. 18, pp. 445-454.
4. Feng Y., Xu J., Zhou Q., Wang R., Liu N., Wu Y., Yuan H., Che H. Alpha-1 Antitrypsin prevents the development of preeclampsia through suppression of oxidative stress. Front Physiol., 2016, Vol. 7, p. 176.
5. Stockley R.A. The multiple facets of alpha-1-antitrypsin. Ann. Transl. Med., 2015, Vol. 3, no. 10, p. 130.
6. Zampronio A.R., Soares D.M., Souza G.E. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin), 2015, Vol. 2, no. 4, pp. 506-521.
7. Koo J.B., Han J.S. Cigarette smoke extract-induced interleukin-6 expression is regulated by phospholipase D1 in human bronchial epithelial cells. J. Toxicol. Sci., 2016, Vol. 41, no. 1, pp. 77-89.
8. de Carvalho F.O., Felipe F.A., de Melo Costa A.C., Teixeira L.G., Silva É.R., Nunes P.S., Shanmugam S., de Lucca Junior W., Quintans J.S., de Souza Araújo A.A. Inflammatory mediators and oxidative stress in animals subjected to smoke inhalation: a systematic review. Lung, 2016.
9. Ansarin K., Rashidi F., Namdar H., Ghaffari M., Sharifi A. Echocardiographic evaluation of the relationship between inflammatory factors (IL6, TNFalpha, hs-CRP) and secondary pulmonary hypertension in patients with COPD. A Cross Sectional Study. Pneumologia, 2015, Vol. 64, no. 3, pp. 31-35.
10. Chen Z., Shao X., Dou X., Zhang X., Wang Y., Zhu C., Hao C., Fan M., Ji W., Yan Y. Role of the mycoplasma pneumoniae/interleukin-8/neutrophil axis in the pathogenesis of pneumonia. PLoS One, 2016, Vol. 11, no. 1, p. e0146377.
11. Majak P. Tumor necrosis factor alpha as an asthma biomarker in early childhood. Pneumonol. Alergol. Pol., 2016, Vol. 84, no. 3, pp. 143-144.
12. Cosmi L., Liotta F., Annunziato F. Th17 regulating lower airway disease. Curr Opin Allergy Clin. Immunol., 2016, Vol. 16, no. 1, pp. 1-6.
13. Miossec P., Korn T., Kuchroo V.K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med., 2009, Vol. 361, no. 9, pp. 888-898.
14. Ortiz G, Salica J.P., Chuluyan E.H., Gallo J.E. Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option? Biol. Res., 2014, Vol. 47, p. 58.
15. Lewis E.C., Shapiro L., Bowers O.J., Dinarello C.A. Alpha1-antitrypsin monotherapy prolongs islet allograſt survival in mice. Proc. Natl. Acad. Sci. USA, 2005, Vol. 102, no. 34, pp. 12153-12158.
16. Subramaniyam D., Virtala R., Pawłowski K., Clausen I.G., Warkentin S., Stevens T., Janciauskiene S. TNF-alpha-induced self expression in human lung endothelial cells is inhibited by native and oxidized alpha1-antitrypsin. Int. J. Biochem. Cell Biol., 2008, Vol. 40, no. 2, pp. 258-271.
17. Bergin D.A., Reeves E.P., Hurley K., Wolfe R., Jameel R., Fitzgerald S., McElvaney N.G. The circulating proteinase inhibitor alpha-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci. Transl. Med., 2014, Vol. 6, no. 217, p. 217ra1.
18. Pott G.B., Chan E.D., Dinarello C.A., Shapiro L. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J. Leukoc. Biol., 2009, Vol. 85, no. 5, pp. 886-895.
19. Subramanian S., Shahaf G., Ozeri E., Miller L.M., Vandenbark A.A., Lewis E.C., Offner H. Sustained expression of circulating human alpha-1 antitrypsin reduces inflammation, increases CD4+FoxP3+ Treg cell population and prevents signs of experimental autoimmune encephalomyelitis in mice. Metab. Brain Dis., 2011, Vol. 26, no. 2, pp. 107-113.
20. Stone H., McNab G., Wood A.M., Stockley R.A., Sapey E. Variability of sputum inflammatory mediators in COPD and alpha1-antitrypsin deficiency. Eur. Respir. J., 2012, Vol. 40, no. 3, pp. 561-569.
21. Seixas S., Garcia O., Trovoada M.J., Santos M.T., Amorim A., Rocha J. Patterns of haplotype diversity within the serpin gene cluster at 14q32.1: insights into the natural history of the alpha1-antitrypsin polymorphism. Hum. Genet., 2001, Vol. 108, no. 1, pp. 20-30.
22. Keren D.F. Protein electrophoresis in clinical diagnosis. Ed. A. London, 2003, pp. 71-77.
23. Salahuddin P. Genetic variants of alpha1-antitrypsin. Curr. Protein Pept. Sci., 2010, Vol. 11, no. 2, pp. 101-117.
24. Olfert I.M., Malek M.H., Eagan T.M., Wagner H., Wagner P.D. Inflammatory cytokine response to exercise in alpha-1-antitrypsin deficient COPD patients ‘on’ or ‘off’ augmentation therapy. BMC Pulm. Med., 2014, Vol. 14, p. 106.
25. Pervakova M.Yu., Emanuel V.L., Titova O.N., Lapin S.V., Mazurov V.I., Belyaeva I.B., Chudinov A.L., Blinova T.V., Surkova E.A. The diagnostic value of alpha-1-antitrypsin phenotype in Patients with granulomatosis with polyangiitis. International Journal of Rheumatology, 2016, pp. 1-5.
26. Pervakova M.Y., Emanuel V.L., Surkova E.A., Mazing A.V., Lapin S.V., Kovaleva I.S., Sysoeva S.N. The comparison of techniques of electrophoresis, immune turbidynamic measurement and phenotyping of alpha-1-antitrypsin for diagnostic of alpha-1-antitrypsin insufficiency. Clin. Lab. Diagn., 2015, Vol. 10, pp. 28-32.
27. Mahr A.D., Edberg J.C., Stone J.H., Hoffman G.S., St Clair E.W., Specks U., Dellaripa P.F., Seo P., Spiera R.F., Rouhani F.N., Brantly M.L., Merkel P.A. Alpha(1)-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum., 2010, Vol. 62, no. 12, pp. 3760-3767.
28. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am. J. Respir. Crit. Care Med., 2003, Vol. 168, no. 7, pp. 818-900.
29. Duan M.C., Zhang J.Q., Liang Y., Liu G.N., Xiao J., Tang H.J., Liang Y. Infiltration of IL-17-producing T cells and Treg cells in a mouse model of smoke-induced emphysema. Inflammation, 2016.
30. Singh D. Chronic Obstructive Pulmonary Disease, Neutrophils and Bacterial Infection: A complex web involving IL-17 and IL-22 unravels. EBioMedicine, 2015, Vol. 2, no. 11, pp. 1580-1581.
31. Chen Q.R., Wang L.F., Xia S.S., Zhang Y.M., Xu J.N., Li H., Ding Y.Z. Role of interleukin-17A in early graſt rejection aſter orthotopic lung transplantation in mice. J. Thorac. Dis., 2016, Vol. 8, no. 6, pp. 1069-1079.
32. Bergin D.A., Reeves E.P., Meleady P., Henry M., McElvaney O.J., Carroll T.P., Condron C., Chotirmall S.H., Clynes M., O’Neill S.J., McElvaney N.G. Alpha-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin. Invest., 2010, Vol. 120, no. 12, pp. 4236-4250.
33. Aldonyte R., Eriksson S., Piitulainen E., Wallmark A., Janciauskiene S. Analysis of systemic biomarkers in COPD patients. COPD, 2004, Vol. 1, no. 2, pp. 155-164.
34. Honda K., Wada H., Nakamura M., Nakamoto K., Inui T., Sada M., Koide T., Takata S., Yokoyama T., Saraya T., Kurai D., Ishii H., Goto H., Takizawa H. IL-17A synergistically stimulates TNF-alpha-induced IL-8 production in human airway epithelial cells: A potential role in amplifying airway inflammation. Exp. Lung. Res., 2016, Vol. 42, no. 4, pp. 205-216.
Review
For citations:
Pervakova M.Yu., Lapin S.V., Surkova E.A., Tkachenko O.Yu., Budkova A.I., Guseva V.I., Titova O.N., Emanuel V.L., Totolian A. PROINFLAMMATORY CYTOKINE PROFILE IN PATIENTS WITH DIFFERENT ALPHA-1-ANTITRYPSIN PHENOTYPES. Medical Immunology (Russia). 2016;18(6):537-544. (In Russ.) https://doi.org/10.15789/1563-0625-2016-6-537-544