ОПЫТ ИСПОЛЬЗОВАНИЯ ЛОКАЛЬНОЙ ИММУНОКОРРЕКЦИИ В ЛЕЧЕНИИ ГНОЙНЫХ РАН

Халилов М.А., Снимщикова И.А.

ГОУ ВПО «Орловский государственный университет», Медицинский институт, г. Орел

Резюме. Представлен анализ эффективности лечения 232 больных с гнойными ранами и раневой инфекцией различной этиологии путем разработки и применения способов локальной иммунокоррекции в сочетании с NO-терапией. Проведен комплекс иммунологических, цитологических, микробиологических исследований, выявлен прямой антибактериальный эффект миелопида, разработаны критерии балльной оценки выраженности воспалительного процесса в мягких тканях. Доказана обоснованность сочетания NO-терапии и миелопида, предложен запатентованный способ местного воздействия на раневую инфекцию. На основе проведенных экспериментальных и клинических исследований, показателей динамики раневого процесса доказано преимущество локальной иммунокоррекции с использованием комбинации NO-терапии и миелопида в комплексном лечении гнойных ран.

Ключевые слова: раневой процесс, гнойная рана, локальная иммунокоррекция, миелопид, NO-терапия.

Khalilov M.A., Snimchsikova, I.A.

EXPERIENCE IN LOCAL IMMUNOCORRECTION IN TREATMENT OF CHRONIC WOUNDS

Abstract. In this article, we present results of local treatment of purulent wounds caused by various agents, in 232 patients, using local immunocorrection techniques combined with therapeutic application of nitrogen monoxide (NO). A series of immunological, cytological, microbiological researches have been carried out, showing a direct antibacterial effect of myelopid has been defined, and appropriate criteria have been developed for scoring intensity of inflammation affecting soft tissues. A justification for combined therapy with NO and myelopid has been obtained, and a method of local treatment of wound infections has been offered and patented. Basing on these experimental and clinical studies, as well as dynamic indices of wound process, we have shown a benefit from local immunocorrection by means of combined NO/myelopid treatment for complex therapy of purulent wounds. (*Med. Immunol., vol. 12, N 3, pp 227-234*)

Keywords: wound process, chronic wounds, local immunocorrection, myelopid, NO therapy.

Введение

Лечение гнойных ран и гнойных хирургических заболеваний мягких тканей, несмотря на применение современных методов и достигнутые определенные успехи, является одной из актуальных проблем современной хирургии, что обусловлено их распространенностью и тенденцией к хроническому и рецидивирующему течению. Гнойные заболевания наблюдаются

Адрес для переписки:

Снимщикова Ирина Анатольевна 302028, г. Орел, ул. Октябрьская, 25.

Тел.: (4862) 43-21-86. Факс: (4862) 43-21-82. E-mail: snimshikova@mail.ru у 30-35% всех хирургических больных и 35-40% больных, поступающих в хирургические стационары [5]. И если тактика хирургического лечения гнойных ран в настоящее время определена, то ряд факторов дополнительного воздействия на раневую поверхность постоянно развивается и совершенствуется. Сложный патогенез раневого процесса обусловливает необходимость комплексного воздействия на различные его стадии [8, 9, 16, 17]. Так как раневая инфекция является одной из основных причин неудовлетворительных исходов ведения открытых повреждений мягких тканей, актуальность оптимизации местной терапии гнойных ран не вызывает сомнений.

В последние годы все большее внимание клиницистов привлекают перспективы

использования при лечении воспалительных процессов оксида азота. В эксперименте и клинике доказан ранозаживляющий эффект при обработке гнойных ран охлажденным газовым потоком, содержащим оксид азота, что заложило основы нового направления в медицине — NO-терапии ран и раневой инфекции [1, 9]. Однако наибольшая эффективность местного воздействия оксида азота отмечена во вторую фазу раневого процесса.

Поскольку гнойно-воспалительные заболевания сопровождаются нарушением факторов иммунной защиты, то одним из адекватных способов комплексного лечения представляется иммунотерапия препаратами системного и топического действия. Работами ряда авторов показано, что локальная иммунокоррекция при гнойных заболеваниях мягких тканей и раневой инфекции способствует снижению продолжительности лечения и частоты рецидивов [4, 10]. Однако недостаточный клинический опыт применения топической иммунокоррекции обосновывает необходимость дальнейшего изучения механизмов ее противовоспалительной активности, расширения показаний к назначению.

Цель исследования — оценить эффективность лечения больных с гнойными ранами и раневой инфекцией различной этиологии путем разработки и применения способов локальной иммунокоррекции.

Материалы и методы

Антимикробное действие миелопида (НПЦ Медицинская иммунология, Россия) определяли методом диффузии в агар по степени задержки роста микроорганизмов в зоне нанесения препарата в дозах 1500 и 3000 мкг/мл после 24 часов инкубации при 37 °C. В качестве тест-культур были использованы штаммы микроорганизмов из коллекции ГИСК им. Л.А. Тарасевича, а также клинические изоляты бактерий (Esherichia coli, Proteus vulgaris, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphilococcus aureus, Staphilococcus epidermidis, Streptococcus pyogenes, Candida albicans, Bacilus subtilis). Учет результатов производили по следующей схеме: 4 балла – полная задержка роста тест-культуры; 3 балла – рост единичных колоний; 2 балла — наличие в месте нанесения препарата 5-10 колоний; 1 балл - массивный рост (до 20 колоний); 0 баллов — сливной рост микроорганизмов.

Моделирование экспериментальных гнойных ран проводилось на 140 крысах «Вистар» весом 170±30 г по Eleck S. и Sommenn K. (1957 г.). При проведении экспериментальных работ соблюдены принципы Европейской конвенции (Страсбург, 1986) и Хельсинской декларации Всемирной медицинской ассоциации о гуманном обращении с животными. После предварительной обработки кожи, в асептических условиях, под гексеналовым наркозом 0,1 мл внутрибрюшинно, на выбритом от шерсти участке спины в межлопаточной области иссекалась кожа с подкожной клетчаткой в виде квадрата 2 х 2 см (400 мм²) по контуру, предварительно нанесенному с помощью трафарета. Края и дно раны раздавливали зажимом Кохера. В рану вносили марлевый тампон весом 0,5 грамма с взвесью суточной культуры золотистого стафилококка (фаготип 3А/3С/55/71) в дозе 1 млрд микробных тел в 1 мл физиологического раствора. Рану ушивали наглухо. На 3-и сутки на спине в межлопаточной области у животных формировался абсцесс со всеми характерными признаками гнойного воспаления. Отмечался отек и гиперемия кожи в области нанесения раны, припухлость, у некоторых животных между швами выделялся гной. При пальпации определялась местная гипертермия. После снятия швов и разведения краев раны удалялся марлевый тампон и выделялось большое количество гноя. Для предупреждения контракции раны за счет эластичности, а также для стандартности условий лечения к краям раны подшивалась металлическая рамка, соответствующая размерам раны, с «крышкой» для удержания перевязочного материала в ране и предупреждения высыхания раневой поверхности.

Лечение начинали с хирургической обработки гнойной раны, включающей эвакуацию гноя, удаление некротической ткани и промывание ее антисептиками. Животные в зависимости от серии исследований и применяемого метода лечения были распределены на 5 групп: животные, не получавшие лечения (1 - контрольная группа); животные 2 группы сравнения (с применением раствора натрия гипохлорита 600 мг/мл) и основные группы животных, получавшие оптимизированное лечение с использованием раствора миелопида (3000 мкг/мл) – 3 группа, комплекса NO-терапии и раствора натрия гипохлорита (600 мг/мл) — 4 группа, а также сочетания NO-терапии и миелопида (3000 мкг/мл) — 5 группа. Фиксирование показателей и забор материала производили на 1, 3, 6, 10, 14 сутки от начала лечения.

Для проведения экспериментальных и клинических исследований было получено разрешение этического комитета медицинского института ГОУ ВПО «Орловский государственный университет», протокол № 2 от 16.03.2005 г.

В клинической части работы была оценена эффективность лечения 232 больных с ранами и раневой инфекцией. Все больные по способу лечения были разделены на 4 группы: І, контрольную, группу составили 60 пациентов, получавших традиционное лечение; во II группу вошли 34 больных, которым на фоне традиционного лечения проводилась локальная иммунокоррекция препаратом миелопид; в третью группу были включены 36 пациентов, получавших местную NO-терапию; IV группу составили 82 больных, которые получали локальную иммунокоррекцию препаратом миелопид в сочетании с NO-терапией. Пациенты всех групп были сопоставимы по возрасту, полу и характеру патологического процесса в мягких тканях, распределение в них было случайным. Средний возраст больных составил $41,5\pm6,2$ года.

Традиционное местное лечение проводилось всем больным и заключалось в радикальной хирургической обработке раны, санации ее растворами антисептиков и применении многокомпонентных мазей на полиэтиленгликолевой основе (левомеколь) в первой фазе и метилурациловой мази во второй фазе раневого процесса.

Алгоритм лечения больных четвертой группы (патент на изобретение № 2326678) включал хирургическую обработку раны и санацию ее растворами антисептиков; воздействие на раневую поверхность воздушно-плазменным потоком, содержащим оксид азота, генерируемым с помощью аппарата «Плазон» (длительность воздействия на одну зону размером 1 х 1 см составляет 8-9 секунд с расстояния 20-25 см от выхода плазмотрона, общее время соответствует площади раны); локальное применение раствора миелопида (3000 мкг/мл), которым обрабатывали раневую поверхность 1 раз в сутки как в первой, так и во второй фазах раневого процесса.

Критериями исключения пациентов из проводимого исследования служили: возраст пациентов меньше 18 и старше 65 лет, сопутствующие соматические заболевания в стадии обострения или декомпенсации, беременность, тяжелый сепсис или септический шок, иммуносупрессия вследствие новообразований или ВИЧ-инфекции, активный вирусный гепатит, индивидуальная непереносимость или ал-

лергическая реакция больного на препараты, используемые для терапии.

Эффективность лечения оценивали в баллах по разработанным нами критериям. При этом учитывали: характер и количество раневого отделяемого, наличие инфильтрации и отека в области гнойного очага, нарушение функции пораженной анатомической зоны, сроки появления грануляций и выполнения ими раны, время начала краевой эпителизации, степень перифокальной гиперемии, клеточный состав мазков-отпечатков с поверхности раны, степень микробной обсемененности (по данным цитологического исследования), скорость сокращения площади раны (мм² в сутки), параметры микроциркуляции и напряжения кислорода (по данным лазерной допплеровской флоуметрии), сроки полного заживления раны, показатели локального иммунного статуса, которые оценивали на 1, 3, 6, 9, 11 сутки и при выписке больного.

Микробиологическое исследование раневого отделяемого включало микроскопический анализ материала и изучение обсемененности образцов путем подсчета числа колониеобразующих единиц микроорганизмов в 1 мл среды (КОЕ/мл) при посеве исследуемого материала на питательные среды в соответствии с приказом МЗ СССР № 535 от 22.01.85 «Об унификации микробиологических (бактериологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учрежлений».

Для объективизации результатов и выявления динамики изменения показателей иммунитета определяли цитокиновый статус, уровень антимикробных пептидов и NO в раневом отделяемом и сыворотке крови.

Уровень цитокинов оценивали методом твердофазного ИФА с помощью набора реагентов ООО «Протеиновый Контур», ООО «Цитокин» (Санкт-Петербург) и DRG (Germany).

Содержание NO в пробах определяли спектрофотометрически с помощью реактива Грисса. Результат рассчитывали по кривой с использованием стандартных растворов нитрита натрия (Голиков П.П., 2004).

Уровень антимикробных пептидов LL37 (hCAP18), дефенсина α (HNP 1-3) и лактоферрина в раневом экссудате оценивали методом твердофазного ИФА с помощью набора реагентов Hbt (Нидерланды) и ЗАО «Вектор-Бест» (Россия). Продукцию миелопероксидазы определяли по методике Азнабаевой Л.Ф. с соавт. (2002)

с расчетом показателя пероксидазной активности исследуемой биологической жидкости (ПОА).

Статистическую обработку результатов исследования проводили с помощью программного комплекса Microsoft Excel XP на компьютере «Pentium IV». Исследование корреляционной взаимосвязи между показателями выполнялись по Пирсону.

Результаты и обсуждение

При оценке микробиологической картины гнойных ран установлено, что среди возбудителей раневой инфекции преобладали золотистый стафилококк (42,7%), стрептококки (17,5%) и кишечная палочка (15,1%). Микробные ассоциации встречались в 68% случаев, монокультура — в 32%. Наиболее выраженный рост колоний был обнаружен при определении S. aureus и S. pyogenes (10^8 - 10^{12} KOE/мл).

В результате проведенных исследований культур, полученных из клинического материала пациентов, нами впервые выявлены прямые антибактериальные эффекты препарата миелопид (патент на изобретение № 2333765). Изучение спектра антимикробной активности миелопида (композита свиных пептидов костномозгового происхождения) показало, что препарат активен

в отношении всех исследованных микроорганизмов, что позволяет относить его к эндогенным антибиотикам животного происхождения. При этом не было выявлено достоверных различий при использовании миелопида в дозах 1500 и 3000 мкг/мл.

Цитологическое исследование раневых мазков-отпечатков и гистологический анализ раневых биоптатов у экспериментальных животных показали, что наилучшие результаты в лечении гнойных ран были получены при использовании комплекса оксида азота и миелопида. Фаза воспаления при применении комплекса NO и миелопида сокращалась до трех суток, а растворов миелопида (3000 мкг/мл) и натрия гипохлорита (600 мг/л) — до четырех-пяти суток соответственно. У животных контрольной группы фаза воспаления составила 14 суток. С 3 суток в сериях с использованием комплекса оксида азота и миелопила фиксировалась фаза регенерации, характеризующаяся развитием грануляционной ткани в виде отдельных островков на дне и стенках раны с заполнением всего дефекта раны к 5 суткам, а к 10-14 суткам были явно заметны признаки фазы реорганизации рубца и эпителизации. В контрольной группе животных грануляционная ткань даже к 14 суткам полностью не выполняла раневой дефект.

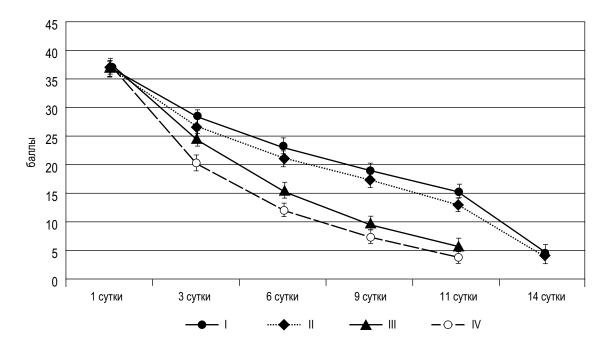


Рисунок. Динамика оценки эффективности лечения больных исследуемых групп в баллах

Примечание. I – контрольная группа; II группа – больные, получавшие локальную иммунокоррекцию препаратом миелопид; III группа – пациенты, получавшие NO-терапию; IV группа – больные, которые получали локальную иммунокоррекцию препаратом миелопид в сочетании с NO-терапией. Достоверность различий между показателями больных внутри групп до и после лечения – p < 0,05. Статистическая значимость различий между группами I и III, I и IV на 6, 9, 11 сутки – p < 0,01.

Следует отметить, что NO и миелопид в эксперименте не оказывали повреждающего действия на грануляционную ткань. Кроме того, у животных 5 группы бактериальная флора (золотистый стафилококк, стрептококки, кишечная палочка и др.) высевалась из ран только на 1-3 сутки, у животных 3 и 4 групп — на 1-4 сутки, при применении раствора натрия гипохлорита — на 1-5 сутки, в контроле — на 14 сутки.

Проведенные исследования послужили экспериментальным обоснованием комбинированного использования оксида азота и миелопида в комплексном лечении гнойных ран (патент на изобретение № 2326678).

Анализ результатов локального применения NO и препарата миелопид у больных гнойными ранами выявил его высокую клиническую эффективность. Так, сравнительная балльная оценка клинических, инструментальных и лабораторных данных, проведенная до лечения, в динамике на 3, 6, 9, 11 и 14 сутки показала, что выраженность их в группе больных, получавших разработанное оптимизированное местное лечение, на 11 сутки снизилась с $37,5\pm0,5$ до $4,05\pm0,3$ балла, а в группе, где проводилось традиционное лечение — с $37,3,0\pm0,5$ до $15,4\pm0,5$ балла (см. рис.).

При изучении динамики показателей течения раневого процесса на фоне лечения было установлено, что на восьмые-девятые сутки у больных четвертой группы отмечалось почти полное купирование воспалительного процесса в ране: очищение от некротических тканей, отсутствие раневого отделяемого, заполнение раневой поверхности грануляционной тканью, уменьшение площади раны, снижение числа микроорганизмов в мазках-отпечатках и наличие в них клеток, свидетельствующих о процессе регенерации тканей (повышение числа фибробластов до $3,4\pm0,2$, макрофагов до $12,1\pm2,8$). У пациентов, получавших традиционное лечение, купирование ло-

кального патологического процесса наблюдалось только на 11-12 день.

Количественное изучение микрофлоры раны на фоне лечения показало снижение общей бактериальной обсемененности до 10^2 КОЕ/мл у 73,6% больных третьей и 85,4% четвертой групп к 6 суткам, на 9 сутки лечения рост микроорганизмов в ране у пациентов данных групп не определялся (р < 0,01 по сравнению с группой I). Общая бактериальная обсемененность раны у большинства больных I и II групп на 6 сутки снижалась до 10^4 КОЕ/мл, а отсутствие роста микроорганизмов регистрировалось лишь к 11-14 суткам лечения.

Лечебная тактика с локальным применением NO и препарата миелопид приводила не только к более быстрой регрессии клинических симптомов, но и позволила снизить среднюю продолжительность пребывания больных в стационаре до $11,8\pm0,3$ койко-дня (см. табл.).

При исследовании локального иммунитета до начала лечения у большинства больных (92,4% обследованных пациентов) наблюдались нарушения в иммунной системе, наиболее выраженные в цитокиновом статусе, продукции метаболитов оксида азота и антимикробных пептидов, что обусловлено участием этих медиаторов в процессах воспаления и репаративной регенерации тканей.

Анализ полученных результатов показал, что острая фаза раневого процесса у всех больных сопровождалась повышением локальной продукции IL-1 β и TNF α со снижением их уровня к 5-7 суткам лечения. Это согласуется с данными литературы об индуцирующем и регулирующем действии IL-1 β и TNF α на ранних этапах заживления раны на синтез других цитокинов и ростовых факторов, а также на клетки, принимающие участие в раневом процессе [10]. Следует отметить, что показатели продукции IL-1 β и TNF α в очаге воспаления были выше их концентрации

ТАБЛИЦА. СРОКИ ЛЕЧЕНИЯ ГНОЙНЫХ РАН ПО ГРУППАМ БОЛЬНЫХ

Группы больных	Всего больных	Средние сроки (сутки)			
		Очищение раны	Появление грануляций	Начало эпителизации	Койко- день
I	60	8,9±0,6	10,8±0,1	11,8±0,2	14,6±0,8
II	34	8,6±0,5	10,2±0,3	10,9±0,3	14,1±0,3
III	38	5,1±0,4*	6,8±0,1*	7,7±0,4*	12,9±0,2*
IV	82	5,0±0,4*	6,4±0,1*	7,0±0,2*	11,8±0,3*

Примечание. * – p < 0,05 между показателями больных I и IV групп, I и III групп.

в сыворотке крови, тогда как IL-8 ни в одном из случаев (как у больных, так и у здоровых лиц) в ней не определялся.

В фазу образования грануляционной ткани имело место транзиторное повышение на 25-35% от исходного уровня IL-10 и IL-1Ra, а также ТФР-В1 (на 56-147%), который регулирует основные функции фибробластов и эпителизацию ран. На фоне локальной иммунотерапии у всех больных после лечения наблюдалось улучшение показателей исходно нарушенного локального и системного цитокинового статуса с нормализацией последних у 64,7% пациентов II группы, 61,1% и 70,7% — III и IV групп соответственно. Вместе с тем после курса традиционной терапии уровни IL-1β, IL-8, TNFα, IL-10 и TGF-β1 достоверно изменялись, однако значений нормы в раневом экссудате и сыворотке крови достигали лишь у 25 и 36,7% больных соответственно. У 92% больных было отмечено сочетание положительной клинической динамики течения раневого процесса и улучшения до нормальных значений показателей локального цитокинового статуса.

Как известно, мононуклеарные фагоциты секретируют широкий спектр биологически активных веществ, осуществляющих в организме самые разнообразные, а иногда и разнонаправленные эффекты действия. Среди продуктов активированных фагоцитов особое место занимают антимикробные пептиды, обеспечивающие «мгновенный иммунитет» и являющиеся, с одной стороны, естественными эндогенными антибиотиками, а с другой — сигнальными молекулами, вовлеченными в процессы активации клеток иммунной системы и репарации тканей [2, 3, 11, 12].

На сегодняшний день белок LL37 (hCAP18) является единственным идентифицированным человеческим кателицидином, проявляющим иммунорегуляторное действие и антимикробную активность против грамотрицательных и грамположительных бактерий, а также грибов и вирусов [11, 18]. В связи с этим заслуживают внимание данные о значительном повышении в острую стадию раневого процесса содержания LL37 (до $14,65\pm2,3$ мкг/мл) по сравнению со стандартными значениями для биологических жидкостей, с пиком продукции на 5-6 сутки. Позитивная динамика течения локального патологического процесса сопровождалась последующим снижением уровня LL37 (hCAP18) в раневой жидкости, а неблагоприятное течение раневого процесса протекало на фоне стабильно высоких концентраций кателицидина. Вместе с тем была установлена широкая вариабельность значений LL37 в сыворотке крови больных: от «нулевых» до 5-10 кратного повышения (4,5±1,8 мкг/мл).

Исследование в раневом экссудате уровня железосвязывающего катионного пептида – лактоферрина, обладающего антибактериальной, противовирусной и антиоксидантной активностью, а также участвующего в регуляции роста и дифференцировки клеток фагоцитарного ряда [3, 15], выявило повышение его содержания (до 14,8±1,2 нг/мл) в раневой жидкости у боль-шинства больных (56,3%) в первую фазу раневого процесса. Снижение концентрации лактоферрина (до 6,8±1,4 нг/мл) наблюдалось у 43,7% пациентов и в 17% случаев сочеталось с затяжным характером течения раневой инфекции. Уровень лактоферрина в сыворотке крови здоровых лиц и больных составил 448±51,4 нг/мл и $936\pm62,2$ нг/мл соответственно.

Учитывая возможный синергический эффект действия лактоферрина и миелопероксидазы в фагосомной вакуоли в процессе фагоцитоза, а также внеклеточно в очаге воспаления [3, 13], представляло интерес оценить продукцию миелопероксидазы на местном и системном уровне. Анализ результатов показал, что у пациентов с раневой инфекцией уровень миелоперокси-дазы в раневом экссудате и в сыворотке крови (780±115 и 1550±195 у.ед. соответственно) был значительно выше, чем у здоровых лиц (665±105 у.ед. в сыворотке крови).

Кроме того, получены данные об изменении продукции дефенсина α (HNP 1-3), который, являясь уникальным маркером нейтрофилов, проявляет микробицидное, хемотаксическое действие, а также иммуномодулирующую и цитотоксическую активность [2, 11]. Установлено, что в первую фазу раневого процесса у всех больных гнойными ранами повышено количество HNP 1-3 в раневой жидкости (до $1,8\pm0,1$ мкг/мл) и сыворотке крови (до 0.95 ± 0.1 мкг/мл). При этом снижение числа нейтрофилов в раневой жидкости коррелировало с уменьшением уровня дефенсина α (r = 0,95; p > 95%). На фоне дефицита эпителизации отмечалось сохранение повышенной концентрации HNP 1-3 в раневом очаге. В плазме крови здоровых лиц уровень HNP 1-3 варьировал от 48 до 105 нг/мл.

В процессе проведения предложенного комплексного лечения по сравнению с традиционной терапией отмечалось улучшение показателей

продукции антимикробных пептидов, более выраженное у пациентов второй и четвертой групп.

Как известно, наряду с антимикробными пептидами важным показателем функционирования врожденного иммунитета является продукция оксида азота, оказывающего мультимодальное действие на различные клетки-мишени и регуляторные молекулы [3, 14]. Анализ содержания NO в раневом экссудате и сыворотке крови показал, что у 75% больных наблюдался исходно высокий уровень метаболитов оксида азота (7.8 ± 0.2) и $4,7\pm0,3$ мкмоль/л соответственно), а снижение их концентрации (до $1,2\pm0,1$ и $1,9\pm0,1$ мкмоль/л соответственно) регистрировалось в 25% случаев. Следует отметить, что на фоне лечения происходило «выравнивание» в раневом экссудате и сыворотке крови концентрации метаболитов NO: снижение исходно повышенных показателей и повышение исходно сниженных. При этом динамика указанных параметров у больных третьей и четвертой групп была более выражена, что, очевидно, связано с введением экзогенного оксида азота в раневой очаг. Нормализации уровня оксида азота у пациентов, получавших традиционное лечение, зарегистрировано не было.

Таким образом, полученные данные показали выраженное положительное влияние локального применения препарата миелопид, NO-терапии, а также их комбинации на восстановление иммунологической реактивности больных с гнойными ранами, приводящее к значительному улучшению, а в ряде случаев к нормализации показателей системного и местного противоинфекционного иммунитета.

Анализ результатов проведенных исследований позволяет сделать заключение о перспективности использования в программах хирургического лечения гнойно-воспалительных заболеваний мягких тканей и раневой инфекции локальной иммунокоррекции и NO-терапии.

Список литературы

- 1. Липатов К.В., Сопромадзе М.А., Шехтер А.Б., Емельянов А.Ю., Грачев С.В. Использование газового потока, содержащего оксид азота (NO-терапия), в комплексном лечении гнойных ран // Хирургия. -2002. № 2. C. 41-43.
- 2. Ковальчук Л.В., Ганковская Л.В., Мороз А.Ф. Противомикробные пептиды иммунной системы: клинические аспекты // Аллергология

- и иммунопатология. -2003. Т. 4, № 2. С. 20-26.
- 3. Кокряков В.Н. Очерки о врожденном иммунитете. СПб.: Наука. 2006. 261 с.
- 4. Снимщикова И.А., Халилов М.А., Медведев А.И., Новикова Е.П., Гострый А.В. Современные подходы к диагностике и лечению гнойно-воспалительных заболеваний и раневой инфекции // Вестник РГМУ, 2008. № 4. С. 95-98.
- 5. Стойко Ю.М., Мелехов П.А., Смехов С.Ю. Применение ранних швов в комплексном лечении гнойных ран // Вестник хирургии, 2003. Т. $162. N \odot 3. C. 10-15.$
- 6. Badiavas E.V., Falanga V. Treatment of chronic wounds with bone marrow-derived cells // Arch. Dermatol. -2003.-N 139. -P. 510-516.
- 7. Deepak V. Composition of Wound Fluid from Pressure Ulcers Treated with Negative Pressure Wound Therapy Using V.A.C. // Wounds. 2006. Vol. 18. P. 119-126.
- 8. Drosou A., Falabella A., Kirsner R.S. Antiseptics on wounds: An area of controversy // Wounds. -2003. Vol. 15, N 5. P. 149-166.
- 9. Falanga V. Wound Bed Preparation in Practice // Ewma Journal. 2004. Vol. 4, N 2. P. 2-5.
- 10. Falanga V., Isaacs C., Paquette D. Wounding of bioengineered skin: cellular and molecular aspects after injury // J. Invest. Dermatol. 2002. Vol. 119, N 3. P. 653-660.
- 11. Harder J., Glaser R., Schroder J.M. Review: Human antimicrobial proteins effectors of innate immunity //Innate Immunity. 2007. Vol. 13, N 6. P. 317-338.
- 12. Kenshi Yamasaki, Gallo Richard L. Antimicrobial peptides in human skin disease // European Journal of Dermatology. 2008. Vol. 18. P. 11-21.
- 13. Klebanoff S.J. Myeloperoxidase: friend and foe // Journal of Leukocyte Biology. 2005. Vol. 77, N 5. P. 598-625.
- 14. Reichner J.S., Meszaros A.J., Louis C.A. Molecular and metabolic evidence for the restricted expression of inducible nitric oxide synthase in healing wounds // American Journal of Pathology. 1999. N 154. P. 1097-1104.
- 15. Valenti P., Antonini G. Lactoferrin: an important host defence against microbial and viral attack // Cell Molecular Life Science. 2005. Vol. 62. P. 2576-2587.

16. Saxena V. Vacuum-assisted closure: microdeformations of wounds and cell proliferation // Plast. Reconstr. Surg. -2004. - Vol. 114, N 5. - P. 1086-1096.

17. Schultz G., Sibbald G., Falanga V. Wound bed preparation: A systematic approach to wound management. // Wound Rep. Regen. -2003, N 11. - P. 1-28.

18. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity // Journal of Leukocyte Biology. — 2004. — Vol. 75. — P. 39-48.

поступила в редакцию 16.12.2009 отправлена на доработку 11.01.2010 принята к печати 28.01.2010