СРАВНИТЕЛЬНАЯ ЭПИДЕМИОЛОГО-ИММУНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ПАЦИЕНТОВ С КОИНФЕКЦИЕЙ ВИЧ/ХГС ИЗ ЧИСЛА ПОТРЕБИТЕЛЕЙ ИНЪЕКЦИОННЫХ НАРКОТИКОВ И ПАЦИЕНТОВ БЕЗ НАРКОТИЧЕСКОГО АНАМНЕЗА В РЕСПУБЛИКЕ ТАТАРСТАН

Пакина 3. А. ¹, Ефремова К. А. ¹, Курбанова А. З. ², Перевозчикова А. И. ², Кочеваткина К. С. ³, Саматова А. Г. ¹, Седуд Д. И. ¹

- ¹ Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации, Приволжский федеральный округ, Республика Татарстан, г. Казань.
- ² Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевская государственная медицинская академия» Министерства здравоохранения Российской Федерации, Удмуртская Республика, г. Ижевск.
- ³ Федеральное Государственное Бюджетное Образовательное Учреждение высшего образования "Тверской Государственный Медицинский Университет" Министерства Здравоохранения Российской Федерации, Тверская область, город Тверь.

COMPARATIVE EPIDEMIOLOGICAL AND IMMUNOLOGICAL CHARACTERISTICS OF PATIENTS WITH HIV/HCV COINFECTION AMONG INJECTING DRUG USERS AND PATIENTS WITHOUT DRUG HISTORY IN THE REPUBLIC OF TATARSTAN

Pakina Z. A. a, Efremova K. A. a, Kurbanova A. Z. b, Perevozchikova A. I. b, Kochevatkina K. S. c, Samatova A. G. a, Sedoud D. I. a

^a Federal State Budgetary Educational Institution of Higher Education "Kazan State Medical University" of the Ministry of Health of the Russian Federation, Volga Federal District, Republic of Tatarstan, Kazan.

^bFederal State Budgetary Educational Institution of Higher Education "Izhevsk State Medical Academy" of the Ministry of Health of the Russian Federation, Udmurt Republic, Izhevsk.

^c Federal State Budgetary Educational Institution of Higher Education "Tver State Medical University" of the Ministry of Health of the Russian Federation, Tver region, Tver city.

Резюме

Введение. Высокая распространенность коинфекции ВИЧ/ХГС среди потребителей инъекционных наркотиков (ПИН) в Республике Татарстан определяет необходимость изучения влияния поведенческого фактора на иммунопатологию.

Цель. Провести сравнительный анализ иммунологических показателей у пациентов с коинфекцией ВИЧ/ХГС из числа ПИН и пациентов без наркотического анамнеза.

Материалы и методы. В одноцентровое сравнительное исследование включены 38 пациентов с коинфекцией ВИЧ/ХГС, употреблявших инъекционные наркотики, и 36 пациентов с ВИЧ/ХГС без наркотического анамнеза. Размер выборки рассчитан для достижения мощности 80% при уровне значимости р<0,05. Проведена оценка субпопуляционного состава лимфоцитов и уровня циркулирующих иммунных комплексов.

Результаты. В группе ПИН выявлено достоверно более выраженное снижение уровня CD4⁺-лимфоцитов $(26,2\pm0,7\% \text{ vs } 30,1\pm0,8\%; \text{ p}<0,001)$ и абсолютного числа CD4⁺-клеток $(0,43\pm0,04 \text{ vs } 0,61\pm0,04 \times 10^9/\text{л}; \text{ p}<0,01)$. Иммунорегуляторный индекс был значимо ниже в группе ПИН $(0,60\pm0,02 \text{ против } 0,75\pm0,02; \text{ p}<0,001)$. Уровень ЦИК был существенно выше в группе ПИН $(568,3\pm30,5 \text{ vs } 402,3\pm28,0 \text{ y.e.; p}<0,001)$. На III клинической стадии ВИЧ-инфекции у ПИН отмечалось наибольшее снижение абсолютного числа лимфоцитов $(24,1\pm0,9\% \text{ vs } 31,3\pm1,6\% \text{ на II стадии; p}<0,001)$.

Выводы. Инъекционная наркомания является независимым фактором, усугубляющим иммунную дисфункцию при коинфекции ВИЧ/ХГС. Полученные данные обосновывают необходимость разработки дифференцированных подходов к мониторингу и лечению данной категории пациентов.

Ключевые слова: коинфекция, ВИЧ-инфекция, хронический гепатит С, иммунные маркеры, потребители инъекционных наркотиков, иммунодефицит.

Abstract

Introduction. The high prevalence of HIV/HCV coinfection among injection drug users (IDUs) in the Republic of Tatarstan necessitates studying the influence of behavioral factors on immunopathology.

Objective. To conduct a comparative analysis of immunological parameters in IDUs with HIV/HCV coinfection and those without a history of drug use.

Materials and Methods. This single-center comparative study included 38 patients with HIV/HCV coinfection who used injection drugs and 36 patients with HIV/HCV without a history of drug use. The sample size was calculated to achieve 80% power at a significance level of p < 0.05. Lymphocyte subpopulation composition and circulating immune complex levels were assessed.

Results. In the IDU group, a significantly more pronounced decrease in the level of CD4⁺-lymphocytes $(26.2\pm0.7\% \text{ vs. } 30.1\pm0.8\%; \text{ p}<0.001)$ and the absolute number of CD4⁺-cells $(0.43\pm0.04 \text{ vs. } 0.61\pm0.04 \times 10^9/\text{l}; \text{ p}<0.01)$ was revealed. The immunoregulatory index was significantly lower in the IDU group $(0.60\pm0.02 \text{ vs. } 0.75\pm0.02; \text{ p}<0.001)$. The level of circulating immune complexes (CIC) was significantly higher in the IDU group $(568.3\pm30.5 \text{ vs. } 402.3\pm28.0 \text{ c.u.; p}<0.001)$. In clinical stage III of HIV infection, IDUs demonstrated the greatest reduction in absolute lymphocyte count $(24.1\pm0.9\% \text{ vs. } 31.3\pm1.6\% \text{ in stage II; p}<0.001)$.

Conclusions. Injection drug use is an independent factor exacerbating immune dysfunction in HIV/HCV coinfection. These findings support the need to develop differentiated approaches to monitoring and treating this patient population.

Keywords: coinfection, HIV infection, chronic hepatitis C, immune markers, injection drug users, immunodeficiency.

1 Введение

Высокая распространенность коинфекции ВИЧ-инфекции и хронического гепатита С (ХГС) среди потребителей инъекционных наркотиков (ПИН) определяет медико-социальную значимость этой проблемы [1, 12, 15]. По данным на 2024 год, в Республике Татарстан зарегистрировано около 6800 случаев ВИЧ-инфекции, при этом примерно 1350 пациентов имеют коинфекцию ВИЧ/ХГС [4].

Несмотря на значительное количество исследований, посвященных иммунопатологии ВИЧ-инфекции и ХГС, остаются недостаточно изученными особенности иммунного статуса у пациентов с коинфекцией в зависимости от статуса инъекционной наркомании [5, 7, 10]. В доступной литературе отсутствуют работы, направленные на дифференциацию вклада собственно инъекционной наркомании как независимого фактора в развитие иммунной дисфункции при коинфекции ВИЧ/ХГС в региональном аспекте.

Цель исследования - провести сравнительный анализ иммунологических показателей у пациентов с коинфекцией ВИЧ/ХГС из числа потребителей инъекционных наркотиков и пациентов без наркотического анамнеза в Республике Татарстан.

2 Материалы и методы

Дизайн исследования.

Проведено одноцентровое сравнительное исследование. Расчет размера выборки показал, что для достижения мощности 80% при уровне значимости p<0,05 и ожидаемом эффекте 0,7 требуется не менее 35 человек в группе.

Критерии отбора.

В исследование включены 74 пациента с коинфекцией ВИЧ/ХГС, находившиеся под наблюдением в ГАУЗ «Республиканский центр по профилактике и борьбе со СПИД» Минздрава Республики Татарстан в период с января 2023 по декабрь 2023 года.

Критерии включения:

- 1. Верифицированный диагноз ВИЧ-инфекции.
- 2. Верифицированный диагноз хронического гепатита С.
- 3. Возраст от 18 до 50 лет.
- 4. Информированное согласие на участие.

Критерии исключения:

- 1. Острые оппортунистические инфекции.
- 2. Декомпенсированный цирроз печени.
- 3. Прием иммуносупрессивной терапии.
- 4. Аутоиммунные заболевания.

Пациенты были разделены на 2 группы: группа 1 (ПИН, n=38) - с анамнезом инъекционной наркомании, группа 2 (не-ПИН, n=36) - без наркотического анамнеза. Описание пациентов представлено в таблице 1. В целом исследуемые группы были сопоставимы (P>0,05).

Этические аспекты.

Исследование одобрено локальным этическим комитетом Казанского государственного медицинского университета (протокол № 245 от 15.12.2022). От всех участников получено добровольное информированное согласие. В ходе исследования обеспечивалась полная конфиденциальность и анонимность данных: вся персональная информация пациентов (ФИО, адреса, паспортные данные) была заменена на уникальные цифровые коды. Доступ к кодировочной таблице имели только главный исследователь и ответственный за базу данных. Обработка и анализ проводились с использованием обезличенных данных. Все лабораторные образцы маркировались только с указанием номера случая и группы исследования.

Лабораторные методы.

Иммунологическое исследование включало определение субпопуляционного состава лимфоцитов методом проточной цитометрии, уровней иммуноглобулинов классов A, M, G и циркулирующих иммунных комплексов (ЦИК). Концентрация ЦИК определялась методом преципитации в 3,75% растворе полиэтиленгликоля (ПЭГ-6000) при инкубации в течение 60 минут при температуре 22°C.

Статистический анализ.

Статистическая обработка данных проводилась с использованием пакета Statistica 6.0. Нормальность распределения проверялась критерием Шапиро-Уилка. Для сравнения групп использовался t-критерий Стьюдента. Различия считались статистически значимыми при p<0,05.

3 Результаты

Сравнительный анализ иммунологических показателей выявил значимые различия между группами ПИН и не-ПИН (таблица 2).

В группе ПИН наблюдалось достоверно более выраженное угнетение клеточного звена иммунитета. Особое клиническое значение имело снижение абсолютного количества CD4+-лимфоцитов до $0.43\pm0.04\times10^9$ /л по сравнению с $0.61\pm0.04\times10^9$ /л в группе не-ПИН (p < 0.01), что свидетельствует о более глубоком Т-клеточном иммунодефиците. Одновременно отмечалось значимое снижение относительного количества CD3+- и CD4+-лимфоцитов, а также CD16+-клеток (натуральных киллеров) при компенсаторном увеличении популяции CD8+- и CD20+-лимфоцитов. Иммунорегуляторный индекс (CD4+/CD8+) был достоверно ниже в группе ПИН (0.60 ± 0.02 против 0.75 ± 0.02 ; р < 0.001), отражая выраженный дисбаланс в системе Т-клеточного иммунитета.

Параметры гуморального иммунитета (уровни IgA, IgM, IgG) статистически значимо не различались между группами. Однако уровень циркулирующих иммунных комплексов был существенно выше в группе ПИН, достигая 568.3 ± 30.5 у.е. против 402.3 ± 28.0 у.е. в группе не-ПИН (р < 0.001), что свидетельствует о более интенсивном иммуновоспалительном процессе.

Анализ динамики иммунологических показателей у пациентов группы ПИН в зависимости от клинической стадии ВИЧ-инфекции выявил прогрессирующее ухудшение состояния иммунной системы (таблица 3).

Наиболее выраженные нарушения отмечались на III клинической стадии, где наблюдалось максимальное снижение абсолютного числа лимфоцитов (24,1 \pm 0,9% против 31,3 \pm 1,6% на II стадии; р < 0,001) и CD4+клеток (0,33 \pm 0,06 против 0,36 \pm 0,06 \times 109/л; р > 0,05), а также значимое повышение уровня циркулирующих иммунных комплексов (650,0 \pm 37,8 у.е. против 485,0 \pm 55,5 у.е. на II стадии; р < 0,05). Иммунорегуляторный индекс прогрессивно снижался по мере прогрессирования заболевания, достигая минимальных значений на III стадии (0,50 \pm 0,02 против 0,61 \pm 0,03 на II стадии; р < 0,01).

Таким образом, у пациентов с коинфекцией ВИЧ/ХГС из числа потребителей инъекционных наркотиков выявлены более выраженные нарушения иммунного статуса, характеризующиеся прогрессирующим Т-клеточным иммунодефицитом, дисрегуляцией иммунорегуляторного индекса и активацией иммуновоспалительных процессов, что особенно заметно на III клинической стадии ВИЧ-инфекции.

4 Обсуждение

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Проведенное исследование демонстрирует, что инъекционная наркомания является значимым модифицирующим фактором, усугубляющим иммунную дисфункцию у пациентов с коинфекцией ВИЧ/ХГС. Полученные нами данные о более выраженном снижении абсолютного и относительного количества СD4+-лимфоцитов согласуются с результатами исследования Gobran et al. (2021), которые детально охарактеризовали уникальные иммунологические особенности при коинфекции ВИЧ/ХГС, включая синергическое воздействие обоих вирусов на истощение Т-клеток и функциональные нарушения дендритных клеток [8]. Важно отметить, что в нашем исследовании впервые показано, что именно у потребителей инъекционных наркотиков наблюдается наиболее выраженное снижение абсолютного количества CD4+-клеток до $0.43 \pm 0.04 \times 10^9$ /л, что может служить прогностическим маркером неблагоприятного течения заболевания в данной когорте пациентов.

Выявленное нами значительное повышение уровня циркулирующих иммунных комплексов (ЦИК) в группе ПИН заслуживает особого внимания в контексте современных представлений о преждевременном старении иммунной системы. Исследование Liang et al. (2023) продемонстрировало, что сочетанное воздействие инъекционной наркомании и гепатита С значительно ускоряет эпигенетическое старение у людей, живущих с ВИЧ, и ассоциировано с повышением маркеров системного воспаления [12]. Это позволяет предположить, что выявленное нами повышение уровня ЦИК у ПИН может быть частью общего про-воспалительного статуса, характерного для ускоренного иммунологического старения в данной популяции.

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Особый интерес представляют выявленные нарушения в системе иммунитета. Обнаруженное снижение CD16⁺-клеток (натуральных киллеров) у ПИН находит объяснение в работе Piggott et al. (2020), которые показали, что у лиц с ВИЧ и инъекционной наркоманией наблюдается более выраженный переход к состоянию хрупкости (frailty), ассоциированный с повышенными уровнями воспалительных маркеров (IL-6, sCD14) и нарушением функции натуральных киллеров [15]. Это объясняет врожденного стойкость нарушений иммунитета даже фоне антиретровирусной терапии и может служить механизмом более агрессивного течения коинфекции у потребителей инъекционных наркотиков.

В отличие от результатов, представленных Artenie et al. (2023) в глобальном мета-анализе, где основное внимание уделялось эпидемиологическим аспектам распространения ВИЧ и ВГС среди ПИН [2], наше исследование предоставляет уникальные иммунологические данные, демонстрирующие специфические нарушения иммунного статуса у данной категории пациентов в регионе Республики Татарстан. Это расхождение подчеркивает важность проведения локальных исследований для выявления региональных особенностей течения коинфекции.

Особого внимания заслуживает выявленная нами динамика иммунологических нарушений в зависимости от стадии ВИЧ-инфекции. Прогрессирующее ухудшение показателей клеточного иммунитета от I к III стадии у ПИН свидетельствует о синергическом негативном влиянии инъекционной наркомании и вирусной коинфекции. Эти данные согласуются с результатами Huff et al. (2022), которые в своем скопинг-обзоре по проблеме ВИЧ и употребления психоактивных веществ в Латинской Америке выявили схожие закономерности ускоренного прогрессирования заболевания у ПИН [11].

Важным аспектом нашего исследования является выявление компенсаторной гиперактивации В-клеточного звена у ПИН. Это наблюдение согласуется с данными Sepúlveda-Crespo et al. (2025), которые показали стойкое снижение титров нейтрализующих антител против ВИЧ у пациентов с коинфекцией ВИЧ/ХГС даже после излечения гепатита С [18]. Это объясняет, почему, несмотря на увеличение количества CD20⁺-клеток, у ПИН повышения уровней иммуноглобулинов наблюдается свидетельствовать о глубоких нарушениях в гуморальном иммунитете.

Полученные результаты подчеркивают необходимость комплексного подхода к ведению ПИН с коинфекцией ВИЧ/ХГС. Согласно данным Soriano et al. (2023), в пост-ковидную эру особенно актуальными становятся стратегии интеграции служб помощи при вирусных гепатитах и ВИЧ-инфекции, с особым вниманием к группам высокого риска, включая ПИН [19]. Выявленные нами иммунологические особенности должны учитываться при разработке персонализированных подходов к мониторингу и лечению данной категории пациентов.

5 Заключение

У пациентов с коинфекцией ВИЧ/ХГС из числа потребителей инъекционных наркотиков выявлены статистически значимые нарушения иммунного статуса по сравнению с пациентами без наркотического анамнеза, проявляющиеся в более выраженном снижении абсолютного и относительного количества CD3⁺- и CD4⁺-лимфоцитов, угнетении функциональной активности натуральных киллеров (CD16⁺) и значительном повышении уровня циркулирующих иммунных комплексов.

Установлено прогрессирующее ухудшение показателей клеточного иммунитета по мере перехода от I к III клинической стадии ВИЧ-инфекции в группе ПИН, что свидетельствует о синергическом негативном влиянии инъекционной наркомании и вирусной коинфекции на иммунную систему.

Выявленные иммунологические особенности подтверждают необходимость разработки дифференцированных клинических рекомендаций для пациентов с коинфекцией ВИЧ/ХГС в зависимости от статуса инъекционной наркомании, включая: усиленный мониторинг иммунологических параметров, рассмотрение вопроса о более раннем начале антиретровирусной терапии, интеграцию программ снижения вреда в систему оказания медицинской помощи.

Ограничения исследования.

Исследование имеет ряд ограничений: относительно небольшой размер выборки, кросс-секционный дизайн, не позволяющий установить причинно-следственные связи, а также невозможность полного контроля всех вмешивающихся факторов (продолжительность наркотизации, характер питания, приверженность лечению, сопутствующие инфекции).

ТАБЛИЦЫ

Таблица 1. Особенности пациентов с коинфекцией ВИЧ/ВГС **Table 1.** Characteristics of patients with HIV/HCV coinfection

	Пациенты с ВИЧ/	ВГС	
	Patients with HIV/	p-	
7.7	Иньъекционные	Пациенты, не употребляющие	значение
Индексы	наркоманы	инъекционные наркотики	p-value
Indexes	Injecting drug	Patients who do not use injection	
	addicts (n=38)	drugs (n=36)	
	$M \pm M$	$M \pm M$	
Возраст, лет	$31,1 \pm 0,6$	$33,4$ \pm $0,7$	0.1184
Age, years	(медиана 30,0)	(медиана 33,5)	0.1164
Пол:			
Gender:			
Мужской	32 (84.2%)	29 (80.6%)	0.7588
Male	32 (04.270)	27 (00.070)	0.7500
Женский	6 (15.8%)	7 (19.4%)	0.8900
Female	0 (13.070)	7 (17.470)	0.0700
Продолжительность			
заболевания, годы	4.3±0.3	4.4±0.3	0.8168
Duration of the	1.5=0.5	1.1-0.5	0.0100
disease, years			
Вирусная нагрузка			
ВИЧ:			
HIV viral load:			
<100 000 копий/мл	27 (71.1%)	29 (80.6%)	0.3840
<100,000 copies/ml	, ,	` '	
>100 000 копий /мл	11 (28.9%)	7 (19.4%)	0.6399
>100,000 copies/ml	, ,	,	
Вирусная нагрузка			
BCC:			
HCV viral load: <800 000 ME/мл			
<800,000 IU/ml	25 (65.8%)	26 (72.2%)	0.6451
<800,000 IC/III >800 000 ME/мЛ			
>800,000 IU/ml	13 (34.2%)	10 (27.8%)	0.7616
Курение	8 (21.1%)	11 (30.6%)	0.6332
Smoking	0 (21.170)	11 (50.070)	0.0332

Примечания: ХГС — хронический гепатит С; ВГС — вирус гепатита С; Ме — медиана; М — среднее арифметическое; m — стандартная ошибка среднего арифметического.

Notes: CHC — chronic hepatitis C; HCV — hepatitis C virus; Me — median; M — arithmetic mean; m — standard error of the arithmetic mean.

Таблица 2. Сравнительные данные иммунологических показателей у пациентов с коинфекцией ВИЧ/ВГС.

Table 2. Comparative data of immunological parameters in patients with HIV/HCV coinfection.

Connectic						
	Контрольная группа Пациенты с ВИЧ/ВГС Patients with HIV/HCV					
Индексы Indexes	здоровых испытуемых Control group of healthy subjects (n=20)	Инъекционные наркоманы Injecting drug addicts (n=38)	Пациенты, не употребляющие инъекционные наркотики (n=36) Patients who do not use injection drugs	P ₁₋₂	P ₁₋₃	P ₂₋₃
	$M \pm M$	T				
Лимфоциты, % Lymphocytes, %	30.6±1.0	27.4±1.2	31.1±1.6	0.0878	0.8296	0.0729
Лейкоциты, $10^9/\pi$ Leukocytes, $10^9/\pi$	6.8±0.3	4.7±0.2	4.8±0.3	0.0001	0.0001	0.7611
CD3+, %	65.4±1.4	56.2±0.8	59.4±0.8	0.0001	0.0002	0.0070
$CD3+, 10^9/л$	1.41±0.05	0.91±0.05	1.08 ± 0.06	0.0001	0.0003	0.0233
CD4+, %	45.5±1.3	26.2±0.7	30.1±0.8	0.0001	0.0001	0.0005
$CD4+, 10^9/л$	0.95±0.06	0.43 ± 0.04	0.61±0.04	0.0001	0.0001	0.0015
CD8+, %	24.6±1.2	43.9±0.5	40.6±0.7	0.0001	0.0001	0.0002
$CD8+, 10^9/л$	0.52±0.04	0.93 ± 0.03	0.57±0.03	0.0001	0.3237	0.0001
CD4+/CD8+	1.93±0.11	0.60 ± 0.02	0.75 ± 0.02	0.0001	0.0001	0.0001
CD16+, %	14.9±1.2	10.5±0.6	12.4±0.4	0.0008	0.0180	0.0117
CD16+, $10^9/л$	0.42 ± 0.05	0.20 ± 0.01	0.25 ± 0.01	0.0001	0.0001	0.0006
CD20+, %	13.1±0.7	25.2±0.6	21.8±0.5	0.0001	0.0001	0.0001
$CD20+, 10^9/л$	0.39 ± 0.02	0.78 ± 0.03	0.63 ± 0.04	0.0001	0.0001	0.0056
IgA, г/л	2.06 ± 0.16	1.87 ± 0.08	2.04 ± 0.10	0.2472	0.9132	0.1930
IgM, г/л	1.56±0.13	1.65±0.12	1.64±0.12	0.6512	0.6810	0.9548
Уровень IgG, г/л IgG level, g/l	11.28±0.48	13.35±0.62	12.69±0.48	0.0301	0.0595	0.4074

ИММУНОЛОГИЯ КОИНФЕКЦИИ ВИЧ/ХГС IMMUNOLOGY OF HIV/HCV COINFECTION

ЦИК,						
стандартные						
единицы						
измерения	93.2±2.1	568.3±30.5	402.3±28.0	0.0001	0.0001	0.0002
CIC, standard						
units of						
measurement						

Примечания: Сокращения: ХГС — хронический гепатит С; ВГС — вирус гепатита С; Ме — медиана; М — среднее арифметическое; т — стандартная ошибка среднего арифметического, ЦИК – циркулирующие иммуные комплексы.

Значимость различий в двух группах показателей: Р1-2 у здоровых людей и потребителей инъекционных наркотиков; Р1-3 у здоровых людей и пациентов, употребляющих инъекционные наркотики; Р2-3 у потребителей инъекционных наркотиков и пациентов, не употребляющих инъекционные наркотики.

Notes: CHC — chronic hepatitis C; HCV — hepatitis C virus; Me — median; M arithmetic mean; m — standard error of the arithmetic mean, CIC, circulating immune complexes.

Significance of differences in two groups of indicators: P1–2 in healthy individuals and injection drug users; P1-3 in healthy individuals and patients who do not use injection drugs; P2-3 in injection drug users and patients who do not use injection drugs.

Таблица 3. Иммунологические показатели у потребителей инъекционных наркотиков, коинфицированных ВИЧ/ВГС, в зависимости от клинической стадии ВИЧ-инфекции.

Table 3. Immunological parameters in injection drug users co-infected with

HIV/HCV, depending on the clinical stage of HIV infection.

	Контроль		енты с ВИ				
	ная	(инъекци					
	группа	Patien	Patients with HIV/HCV				
	здоровых	(injec	ction drug u	isers)			
	испытуем						
Индексы	ых		Стадия	Стадия	P_{2-3}	P_{3-4}	P_{2-4}
Indexes	Control	Стадия І	II	III			
	group of	Stage I	Stage II	Stage III			
	healthy subjects	$(n_2=15)$	$(n_3=11)$	$(n_4=12)$			
	(n1 = 20)						
	(111 –20)	$M \pm$	M		-		
Лимфоциты,							
%	30.6±1.0	27.3±1.4	31.3±1.6	24.1±0.9	0.074	0.000	0.0823
Lymphocytes,	30.0±1.0	27.3-1.7	J1.J±1.0	27.140.7	3	8	0.0023
<u>%</u>							
Лейкоциты,					0.574	0.026	
10 ⁹ /л	6.8 ± 0.3	5.1±0.4	4.9 ± 0.2	4.1±0.2	0.574	0.026	0.0598
Leukocytes, $10^9/\pi$					2	0	
			7 6 0 0 0		0.205	0.258	
CD3+, %	65.4±1.4	59.2±1.3	56.0±2.0	53.3±1.2	2	8	0.0071
CD3+, 10 ⁹ /л	1.41±0.05	1.04±0.0	0.91±0.0	0.83 ± 0.0	0.139	0.393	0.0181
CD3+, 10 /л	1.41±0.03	5	7	6	4	5	0.0161
CD4+, %	45.5±1.3	30.3±1.1	26.0±1.2	23.3±1.0	0.014	0.098	0.0001
					7	9	0.0001
CD4+, $10^9/\pi$	0.95 ± 0.06	0.61 ± 0.0	0.36 ± 0.0	0.33 ± 0.0	0.007	0.735	0.0026
		6	6	6	5 0.502	0.012	
CD8+, %	24.6±1.2	42.3±0.8	43.2±1.1	46.3±0.5	3	3	0.0006
		0.83±0.0	0.86 ± 0.0	1.10±0.0	0.705	0.002	
CD8+, $10^9/л$	0.52 ± 0.04	6	5	5	0	9	0.0021
CD4+/CD9+	1 02 + 0 11	0.72 ± 0.0	0.61 ± 0.0	0.50 ± 0.0	0.015	0.005	0.0001
CD4+/CD8+	1.93±0.11	3	3	2	2	7	0.0001
CD16+, %	14.9±1.2	11.2±0.7	10.2±1.0	10.4±1.2	0.387	0.899	0.5371
CD 101, 70	1117-112				3	3	0.0071
CD16+, $10^9/\pi$	0.42 ± 0.05	0.22 ± 0.0	0.20 ± 0.0	0.21 ± 0.0	0.537	0.555	0.7477
		3	1	1	9	6	

10.15789/1563-0625-CEA-3301

CD20+, %	13.1±0.7	23.8±0.6	25.2±0.4	26.5±0.6	0.072	0.115	0.0033
CD20+, 10 ⁹ /л	0.39±0.02	0.69±0.0 5	0.79±0.0 4	0.85±0.0 5	0.154	0.380	0.0449
IgA, г/л	2.06±0.16	2.00±0.1 2	1.95±0.1 6	2.04±0.1 2	0.797	0.651	0.8134
IgM, г/л	1.56±0.13	1.59±0.1 4	1.68±0.1 6	1.66±0.2 0	0.666	0.939	0.7679
Уровень IgG, г/л IgG level, g/l	11.28±0.48	12.61±0.	13.62±0. 57	13.82±0.	0.309	0.811	0.2228
ЦИК, стандартные единицы измерения CIC, standard units of measurement	93.2±2.1	570.2±5 1.2	485.0±5 5.5	650.0±3 7.8	0.276	0.021	0.2420

Примечания: ХГС — хронический гепатит С; ВГС — вирус гепатита С; Ме — медиана; М — среднее арифметическое; m — стандартная ошибка среднего арифметического, ЦИК- циркулирующие иммунные комплексы.

Значимость различий в двух группах показателей: P_{2-3} у пациентов с I или II стадией; P_{3-4} у пациентов со II и III стадией; P_{2-4} у пациентов с I и III стадиями. **Notes:** CHC — chronic hepatitis C; HCV — hepatitis C virus; Me — median; M — arithmetic mean; m — standard error of the arithmetic mean, CIC, circulating immune complexes.

Significance of differences in two groups of parameters: P2–3 in patients with stage I or II; P3–4 in patients with stage II and III; P2–4 in patients with stage I and III.

ТИТУЛЬНЫЙ ЛИСТ_МЕТАДАННЫЕ

Блок 1. Информация об авторе ответственном за переписку

Пакина Зоя Александровна — младший научный сотрудник кафедры инфнеционных болезней, иммунологии и эпидемиологии; студент 6 курса медико-профилактического факультета;

Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации;

адрес: 420012, Приволжский федеральный округ, Республика Татарстан, г. Казань, ул. Бутлерова, д.49;

телефон: +7 843 236-78-20; e-mail: <u>zoya.pakina01@mail.ru</u>

Zoya Aleksandrovna Pakina – 6th-year student of the Faculty of Preventive Medicine;

Federal State Budgetary Educational Institution of Higher Education "Kazan State Medical University" of the Ministry of Health of the Russian Federation;

address: 420012, Volga Federal District, Republic of Tatarstan, Kazan, Butlerova Street, 49;

telephone: телефон: +7 843 236-78-20;

e-mail: zoya.pakina01@mail.ru

Блок 2. Информация об авторах

Перевозчикова Алина Ильдаровна — студент 6 курса, младший научный сотрудник кафедры эпидемиологии и инфекционных заболеваний. Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевская государственная медицинская академия» Министерства здравоохранения Российской Федерации, 426034, Удмуртская Республика, г. Ижевск, ул. Коммунаров, 281

e-mail: alinazalya@yandex.ru

Alina Ildarovna Perevozchikova is a sixth-year student and junior researcher in the Department of Epidemiology and Infectious Diseases. Federal State Budgetary Educational Institution of Higher Education "Izhevsk State Medical Academy" of the Ministry of Health of the Russian Federation, 281 Kommunarov Street, Izhevsk, Udmurt Republic, 426034.

e-mail: alinazalya@yandex.ru

Курбанова Алсу Азатовна — студент 6 курса; Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевская государственная медицинская академия» Министерства здравоохранения Российской Федерации, 426034, Удмуртская Республика, г. Ижевск, ул. Коммунаров, 281.

e-mail: alsuuuuu02@mail.ru

Alsu Azatovna Kurbanova – 6th-year student; Federal State Budgetary Educational Institution of Higher Education "Izhevsk State Medical Academy" of the Ministry of Health of the Russian Federation, 426034, Udmurt Republic, Izhevsk, Kommunarov Street, 281.

e-mail: alsuuuuu02@mail.ru

Кочеваткина Ксения Сергеевна — студент 6 курса; Федеральное Государственное Бюджетное Образовательное Учреждение высшего образования "Тверской Государственный Медицинский Университет" Министерства Здравоохранения Российской Федерации, 170100, Тверская область, город Тверь, Советская ул., д.4.

Ksenia Sergeevna Kochevatkina – 6th-year student; Federal State Budgetary Educational Institution of Higher Education "Tver State Medical University" of the Ministry of Health of the Russian Federation, 170100, Tver region, Tver, Sovetskaya st., bldg. 4.

Саматова Айша Галиевна — младший научный сотрудник кафедры инфекционных болезней с курсом эпидемиологии, студент 6 курса; Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации, 420012, Приволжский федеральный округ, Республика Татарстан, г.Казань, ул. Бутлерова, д. 49

e-mail: samatova.aisha@gmail.com

Aysha Galievna Samatova – Junior Researcher, Department of Infectious Diseases with a Course in Epidemiology, 6th-year student; Federal State Budgetary Educational Institution of Higher Education "Kazan State Medical University" of the Ministry of Health of the Russian Federation, 420012, Volga Federal District, Republic of Tatarstan, Kazan, Butlerova Street, 49

e-mail: samatova.aisha@gmail.com

Седуд Диляра Ильгизовна — младший научный сотрудник кафедры внутренней медицины с курсом иммунологии и аллергологии, студент 6 курса; Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации, 420012, Приволжский федеральный округ, Республика Татарстан, г.Казань, ул. Бутлерова, д.49

e-mail: dilyara.khayrullina9@list.ru

Dilyara Ilgizovna Sedoud – Junior Researcher, Department of Internal Medicine with a Course in Immunology and Allergology, 6th-year student; Federal State Budgetary Educational Institution of Higher Education "Kazan State Medical University" of the Ministry of Health of the Russian Federation, 420012, Volga Federal District, Republic of Tatarstan, Kazan, Butlerova Street, 49 e-mail: dilyara.khayrullina9@list.ru

Ефремова Ксения Анатольевна студент 6 курса; Федеральное государственное бюджетное образовательное учреждение высшего "Казанский государственный образования медицинский университет" Министерства здравоохранения Российской Федерации, 420012, Приволжский федеральный округ, Республика Татарстан, г.Казань, ул. Бутлерова, д.49 e-mail: Dancer.xenia.2002@gmail.com

Ksenia Anatolyevna Efremova – 6th-year student; Federal State Budgetary Educational Institution of Higher Education "Kazan State Medical University" of the Ministry of Health of the Russian Federation, 420012, Volga Federal District, Republic of Tatarstan, Kazan, Butlerova Street, 49

e-mail: Dancer.xenia.2002@gmail.com0

Блок 3. Метаданные статьи

СРАВНИТЕЛЬНАЯ ЭПИДЕМИОЛОГО-ИММУНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ПАЦИЕНТОВ С КОИНФЕКЦИЕЙ ВИЧ/ХГС ИЗ ЧИСЛА ПОТРЕБИТЕЛЕЙ ИНЪЕКЦИОННЫХ НАРКОТИКОВ И ПАЦИЕНТОВ БЕЗ НАРКОТИЧЕСКОГО АНАМНЕЗА В РЕСПУБЛИКЕ ТАТАРСТАН

COMPARATIVE EPIDEMIOLOGICAL AND IMMUNOLOGICAL CHARACTERISTICS OF PATIENTS WITH HIV/HCV COINFECTION AMONG INJECTING DRUG USERS AND PATIENTS WITHOUT DRUG HISTORY IN THE REPUBLIC OF TATARSTAN

Сокращенное название статьи для верхнего колонтитула:

ИММУНОЛОГИЯ КОИНФЕКЦИИ ВИЧ/ХГС IMMUNOLOGY OF HIV/HCV COINFECTION

Ключевые слова: коинфекция, ВИЧ-инфекция, хронический гепатит С, иммунные маркеры, потребители инъекционных наркотиков, иммунодефицит.

Keywords: coinfection, HIV infection, chronic hepatitis C, immune markers, injection drug users, immunodeficiency.

Оригинальные статьи. Количество страниц текста – 7, Количество таблиц – 3, Количество рисунков – 0. 26.09.2025

СПИСОК ЛИТЕРАТУРЫ

No	Русскоязычные источники	Англоязычные версии	DOI/URL
1	Жээналиева Г.М., Канатбекова А.К.,		
	Абдикеримова М.М., Абдикеримов		1 8 31
	М.М., Жолдошев С.Т. Хронический		
	гепатит С и ВИЧ-инфекция //	· ·	
	Международный журнал прикладных	_	
	и фундаментальных исследований. –	Applied and Fundamental	
	2021. – № 6. – C. 57-62.	Research, 2021, no. 6, pp. 57-62.	
2	Прожерина Ю., Широкова И. Если	Prozherina E.Yu., Shirokova I. If	DOI: 10.21518/1561-5936-2020-11-12-38-
	диагноз – «коинфекция» // Ремедиум.	•	41
	– 2020. – № 11-12. – C. 38-41.	Remedium. Journal on Russian	
		pharmaceutical market and	
		medical equipment, 2020, no. 11-	
		12, pp. 38-41.	
3	Сундуков А.В., Мельников Л.В.,		https://www.rmj.ru/articles/gastroenterolo
	Евдокимов Е.Ю. Характеристика		giya/Harakteristika_bolynyh_hronicheski
	больных хроническим гепатитом С и	-	m_gepatitomS_i_VICh-infekciey/
	ВИЧ-инфекцией // РМЖ.		
	Медицинское обозрение. – 2018. – №	Review, 2018, no. 7(II), pp. 64-67.	
	7(II). – C. 64-67.		
4	Феоктистова Е.П., Константинов		DOI: 10.23670/IRJ.2023.128.31
	Д.Ю., Балмасова И.П. Порядок		
	поступления в организм вирусов	-	
		hepatitis B and C viruses as a risk	
	гепатитов В и С как фактор риска	factor for progressive liver fibrosis	

	прогрессирующего фиброза печени	in coinfection.	International	
		Research Journal,		
	вирусами // Международный научно-		2023, 110.	
	исследовательский журнал. – 2023. –	2(120), Tituete 31.		
	№ 2(128). – Статья 31.			
5	Artenie A., Stone J., Fraser H., Stewart			DOI: 10.1016/S2468-1253(23)00018-3
	D., Arum C., Lim A.G., McNaughton			DOI: 10.1010/02400 1233(23)00010 3
	A.L., Trickey A., Ward Z., Abramovitz			
	D., Alary M., Astemborski J., Bruneau J.,			
	Clipman S.J., Coffin C.S., Croxford S.,			
	DeBeck K., Emanuel E., Hayashi K.,			
	Hermez J.G., Low-Beer D., Luhmann N.,			
	Macphail G., Maher L., Palmateer N.E.,			
	Patel E.U., Sacks-Davis R., Van Den			
	Boom W., van Santen D.K., Walker J.G.,			
	Hickman M., Vickerman P. Incidence of			
	HIV and hepatitis C virus among people			
	who inject drugs, and associations with			
	age and sex or gender: a global			
	systematic review and meta-analysis.			
	Lancet Gastroenterol Hepatol. 2023			
	Jun;8(6):533-552.			
6	Cieplý L., Simmons R., Ijaz S., Kara E.,			DOI: 10.1017/S0950268819000360
	Rodger A., Rosenberg W., McGuinness			
	A., Mbisa J.L., Ledesma J., Ohemeng-			
	Kumi N., Dicks S., Potts H., Lattimore S.,			
	Mandal S. Seroprevalence of HCV, HBV			

		1
	and HIV in two inner-city London	
	emergency departments. Epidemiology	
	& Infection, 2019, Vol. 147, e145.	
7	Dong Y., Zhi X., Lei G. Changes of body	DOI: 10.3892/etm.2018.6938
	immunity and inflammatory response in	
	HIV/HCV co-infected patients.	
	Experimental and Therapeutic Medicine,	
	2019, Vol. 17, no. 1, pp. 403-407.	
8	Gobran S.T., Ancuta P., Shoukry N.H. A	DOI: 10.3389/fimmu.2021.726419
	Tale of Two Viruses: Immunological	
	Insights Into HCV/HIV Coinfection.	
	Front Immunol. 2021 Aug 12;12:726419.	
9	Huff H.V., Carcamo P.M., Diaz M.M.,	DOI: 10.3390/ijerph19127198
	Conklin J.L., Salvatierra J., Aponte R.,	
	Garcia P.J. HIV and Substance Use in	
	Latin America: A Scoping Review. Int J	
	Environ Res Public Health. 2022 Jun	
	12;19(12):7198.	
10	Liang X., Justice A.C., Marconi V.C.,	DOI: 10.1080/15592294.2023.2212235
	Aouizerat B.E., Xu K. Co-occurrence of	
	injection drug use and hepatitis C	
	increases epigenetic age acceleration that	
	contributes to all-cause mortality among	
	people living with HIV. Epigenetics.	
	2023 Dec;18(1):2212235.	
11	Moradi M., Tabibzadeh A., Javanmard	DOI:
	D. Assessment of key elements in the	10.2174/1570162X18999200325162533

	T T	
	innate immunity system among patients	
	with HIV, HCV, and coinfections of	
	HIV/HCV. Current HIV Research, 2020,	
	Vol. 18, no. 3, pp. 194-200.	
12	Piggott D.A., Bandeen-Roche K., Mehta	DOI: 10.1097/QAD.000000000002527
	S.H., Brown T.T., Yang H., Walston J.D.,	
	Leng S.X., Kirk G.D. Frailty transitions,	
	inflammation, and mortality among	
	persons aging with HIV infection and	
	injection drug use. AIDS. 2020 Jul	
	1;34(8):1217-1225.	
13	Rashti R., Alavian S.M., Moradi Y.,	DOI: 10.1007/s00705-020-04716-1
	Sharafi H., Mohamadi Bolbanabad A.,	
	Roshani D., Moradi G. Global prevalence	
	of HCV and/or HBV coinfections among	
	people who inject drugs and female sex	
	workers who live with HIV/AIDS: a	
	systematic review and meta-analysis.	
	Archives of Virology, 2020, Vol. 165, no.	
	9, pp. 1947-1958.	
14	Sepúlveda-Crespo D., Sánchez-Merino	DOI: 10.3390/vaccines13050539
	V., Amigot-Sánchez R., Rubio-Pérez A.,	
	Díez C., Hontañón V., Berenguer J.,	
	González-García J., García F., Martínez	
	I., Yuste E., Resino S. Persistent Low	
	Anti-HIV Neutralizing Antibody Titers	
	in HIV/HCV Coinfection Despite HCV	

	Cure: A 5-Year Longitudinal Analysis.	
	Vaccines (Basel). 2025 May	
	19;13(5):539.	
15	Singal A.K., Anand B.S. Management of	DOI: 10.3748/wjg.15.3713
	hepatitis C virus infection in HIV/HCV	
	co-infected patients: clinical review.	
	World Journal of Gastroenterology,	
	2009, Vol. 15, no. 30, pp. 3713-3724.	
16	Soriano V., Moreno-Torres V., Mendoza	DOI: 10.24875/AIDSRev.M23000061
	C., Corral O., Barreiro P. Viral hepatitis	
	in persons living with HIV in the post-	
	COVID era. AIDS Rev. 2023;25(1):1-13.	
17	Vafadar S., Shahdoust M., Kalirad A.,	DOI: 10.1371/journal.pone.0247200
	Zakeri P., Sadeghi M. Competitive	
	exclusion during co-infection as a	
	strategy to prevent the spread of a virus:	
	A computational perspective. PLoS	
	ONE, 2021, Vol. 16, no. 2: e0247200.	
18	Xu W., Zhao P., Li H., Wang C. HCV	DOI: 10.1186/s12879-023-08586-1
	knowledge and attitudes among HIV-	
	negative MSM and MSM living with	
	HIV in China: results from a cross-	
	sectional online survey. BMC Infectious	
	Diseases, 2023, Vol. 23:599.	
19	El-Ghitany E.M., Farghaly A.G.,	DOI:
	Alkassabany Y.M. Prevalence and risk	10.2174/1570162X19666210805095712
	factors of HBV and HCV co-infection	

10.15789/1563-0625-CEA-3301

	among people living with HIV in an	
	Egyptian setting. Current HIV Research,	
	2021, Vol. 19, no. 6, pp. 514-524.	
20	Hu J., Liu K., Luo J. HIV-HBV and	DOI: 10.1007/978-3-030-03502-0_9
	HIV-HCV coinfection and liver cancer	
	development. Cancer Treatment and	
	Research, 2019, Vol. 177, pp. 231-250.	
21	Martinez M.A. Diversity and Evolution	DOI: 10.3390/v13040642
	of HIV and HCV. Viruses, 2021, Vol. 13,	
	no. 4: 642.	