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Резюме. Тромбоциты – это небольшие постклеточные элементы мегакариоцитов, циркулирующие 
в крови. На их поверхности представлены молекулы межклеточной адгезии, Toll-подобные рецепто-
ры, рецепторы хемокинов и цитокинов и другие. Тромбоциты содержат соединения с разнообразной 
биологической функцией, в том числе хемокины, цитокины и ростовые факторы. Благодаря особен-
ностям цитологического строения  – мембранной системе и секреторным гранулам  – тромбоциты 
способны быстро активироваться и вступать во взаимодействие с другими клетками. Тромбоциты 
участвуют в гемостазе, иммунных реакциях, ангиогенезе. Активация, необходимая тромбоцитам для 
выполнения своих функций, опосредуется через ионы кальция и может инициироваться компонен-
тами субэндотелия, белками системы комплемента, продуктами секреции других тромбоцитов. При 
активации тромбоциты высвобождают секреторные гранулы, изменяют морфологию. Помимо этого, 
тромбоциты, подобно другим клеткам организма, в норме и при патологии продуцируют микрове-
зикулы – сравнительно новый объект, интенсивное изучение которого ведется в настоящее время. 
Целью настоящего обзора явилось сравнительное описание тромбоцитов и их микровезикул, кото-
рым тромбоциты делегируют некоторые свои функции как посредникам коммуникации с другими 
клетками, в том числе эндотелиоцитами. Микровезикулы являются перспективным объектом иссле-
дования, изучается возможность их использования в качестве диагностического и терапевтического 
агента. Наибольшая часть микровезикул, циркулирующих в периферической крови, имеют тромбо-
цитарное происхождение. В составе микровезикул тромбоцитов присутствуют цитокины и другие 
белки, липиды и нуклеиновые кислоты (ДНК, мРНК, микроРНК). На поверхности микровезикул 
тромбоцитов сохраняются поверхностные маркеры родительских клеток; на их мембране представ-
лен фосфатидилсерин, который дополнительно участвует в тромбообразовании за счет аккумулиро-
вания факторов коагуляции. Под влиянием сигналов микроокружения состав, фенотип тромбоци-
тарных микровезикул, а также их функциональная направленность в отношении эндотелия может 
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варьировать в зависимости от стимула. Эффект, оказываемый ими на ангиогенез и регенерацию, 
недостаточно изучен, экспериментальные данные демонстрируют как положительное, так и отри-
цательное влияние. При различных патологиях, сопровождающихся эндотелиальной дисфункцией 
(сердечно-сосудистые патологии, преэклампсия, диабет), наблюдается повышение уровня тромбо-
цитарных микровезикул, что указывает на их возможное участие в патогенезе заболеваний. Тем не 
менее влияние тромбоцитов и их микровезикул на эндотелий, в том числе активации в эндотелии 
различных сигнальных путей, остается предметом дальнейших исследований. 

Ключевые слова: тромбоциты, внеклеточные везикулы, микровезикулы, эндотелий, ангиогенез, сигнальные пути
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Abstract. Blood platelets are circulating anuclear structures derived from megakaryocytes. Intercellular 
adhesion molecules, Toll-like receptors, chemokine and cytokine receptors are represented on their surface. 
Platelets contain biologically active molecules, including chemokines, cytokines, and growth factors. Due to 
their cytological features (membranes and secretory granules), the platelets are capable of fast activation and 
interactions with different cells. Platelets are involved in hemostasis, immune reactions, and angiogenesis, 
being activated by sub-endothelial components, complement proteins, secretion products from other platelets. 
The activation is mediated via calcium ions. Upon these events, the platelets change their morphology, release 
secretory granules and produce microvesicles, a relatively new target of biological research. The aim of this 
review is a comparative description of platelets and their microvesicles. Platelet-derived microvesicles perform 
platelets functions and communicate with other cells, including endothelium. Microvesicles represent a 
promising object of research, and the opportunities of their applications for diagnostics and therapy are being 
actively studied. Majority of circulating microvesicles are of platelet origin. The platelet-derived microvesicles 
contain cytokines and other proteins, lipids and nucleic acids (DNA, mRNA, microRNA). Microvesicles bear 
the surface markers of parental cells; phosphatidylserine is represented on their membrane, which additionally 
participates in clotting, due to deposition of blood coagulation factors. Under the influence of signals from 
microenvironment, the composition, phenotype of platelet microvesicles, as well as their functional abilities 
towards endothelium may vary, depending on the actual stimuli. Their effects upon angiogenesis and 
regeneration have not been sufficiently elucidated, with controversial effects reported in experimental studies. 
Increased levels of platelet microvesicles are observed in the disorders accompanied by endothelial dysfunction, 
thus suggesting their possible participation in these events. The effects of platelets and their microvesicles on 
endothelium, including activation of various signaling pathways in endothelial cells, still remain the subject of 
further research.

Keywords: platelets, extracellular vesicles, microvesicles, endothelium, angiogenesis, signalling pathways
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Введение
В основе базовой функциональной актив-

ности эндотелиальных клеток (ЭК) лежат их 
взаимодействия друг с другом на аутокринном 
и паракринном уровнях  [5] и с экстрацеллю-
лярным матриксом  [225]. Ангиогенез в целом и 
функциональная активность ЭК контролирует-
ся клетками микроокружения через продукцию 

цитокинов [109] и/или продукцию или модифи-
кацию компонентов внеклеточного матрикса. 
Наиболее активными продуцентами цитокинов в 
микроокружении ЭК, а также наиболее важными 
регуляторами активности других клеток микроо-
кружения являются моноциты/макрофаги, есте-
ственные киллеры и тромбоциты. Влияние этих 
клеток, в особенности тромбоцитов, на функции 
ЭК и процессы ангиогенеза в настоящее время 
изучены довольно подробно. Одним из слабо 
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изученных факторов, влияющих на ЭК и несу-
щих множество сигналов, являются микровези-
кулы (МВ) различного происхождения. Для ЭК 
наиболее актуальными являются микровезикулы 
тромбоцитарного (тМВ) и лейкоцитарного про-
исхождения, обнаруживаемые в кровотоке как 
при физиологических, так и при патологических 
состояниях  [120, 130]. МВ способны проникать 
в различные области и ткани, преодолевая даже 
гемато-энцефалический барьер  [163]. Микро-
везикулы тромбоцитов являются предметом ак-
тивного изучения в настоящее время в связи со 
значительным содержанием их в циркуляции  – 
более 60% из них являются тМВ  [15, 140, 166, 
177]. МВ образуются из тромбоцитов в случае 
их активации. Механизм их образования опре-
деляет сходство содержимого МВ и тромбоцита, 
а значит и их функциональной активности в от-
ношении функций ЭК и процессов ангиогенеза 
в целом. Целью настоящего обзора является сум-
мирование данных литературы о составе, фено-
типе тромбоцитов и их МВ, а также их влиянии 
на процессы ангиогенеза и сигналинг в ЭК.

Тромбоциты: фенотип
Тромбоциты – это небольшие постклеточные 

элементы мегакариоцитов, циркулирующие в 
кровотоке и представляющие собой маленькие 
гранулярные безъядерные дискообразные струк-
туры диаметром 1-2 мкм, участвующие в важней-
ших процессах организма: гемостазе, реакциях 
иммунитета, ангиогенезе [93, 125, 155]. 

Тромбоциты экспрессируют различные по-
верхностные белки, в том числе адгезионные 
молекулы, необходимые для взаимодействия с 
клетками и внеклеточным матриксом (табл.  1). 
Тромбоцитарный комплекс GPIb-IX-V является 
одним из первых рецепторов, участвующих в про-
цессе адгезии тромбоцитов к поврежденной со-
судистой стенке через связь с vWF (von Willebrand 
factor) субэндотелия. GPIb-IX-V состоит четы-
рех трансмембранных гликопротеинов: GPIbα и 
GPIbβ, GPIX и GPV. Связь комплекса GPIb-IX-V 
с vWF осуществляется посредством субъединицы 
GPIbα. Эта же субъединица может связываться 
с тромбином  [22, 57]. Гликопротеин GPIIb/ IIIa 
(интегрин αIIbβ3, или CD41/CD61)  – наибо-
лее распространенный интегрин поверхности 
тромбоцитов. Он связывается с фибриногеном, 
фибрином, vWF и фибронектином. CD41/CD61 
конститутивно экспрессируется на тромбоцитах 
в неактивной форме, при активации он изменяет 
свою конформацию, приобретая большее срод-
ство к лигандам. Активационными сигналами, 
которые могут привести к увеличению сродства 
CD41/CD61 с его лигандами относят тромбоксан 
А2, тромбин, коллаген и vWF [88].

P-селектин (CD62p, или GM-140)  – содер-
жащийся в α-гранулах гликопротеин, который 
при активации тромбоцита выставляется на по-
верхность для взаимодействия с клетками, несу-
щими молекулу PSGL-1  – лиганд P-селектина. 
Тромбоциты способны экспрессировать не толь-
ко CD62p, но и лиганд к нему – PSGL-1. За счет 
взаимодействия молекул CD62p/PSGL-1 проис-
ходит связь тромбоцитов друг с другом, необхо-
димая для стабилизации формирующегося тром-
ба [127, 136]. CD62p вовлечен во взаимодействие 
тромбоцитов с лейкоцитами  [110]. Есть данные 
о том, что через P-селектин возможна актива-
ция системы комплемента путем связывания 
C3b  [58]. Тем не менее P-селектин не является 
исключительной молекулой, характерной для 
тромбоцитов: в тельцах Вейбеля–Паладе ЭК так-
же содержится данная молекула клеточной адге-
зии. При активации ЭК экспрессируют CD62p, 
и через него осуществляется взаимодействие с 
тромбоцитами [72, 142]. 

CD31, или молекула адгезии тромбоцитов/
ЭК (PECAM-1),  – это трансмембранный гли-
копротеин, входящий в состав суперсемейства 
иммуноглобулинов. Данная молекула участвует, 
главным образом, в гомотипических взаимодей-
ствиях, то есть с CD31, представленным на дру-
гой клетке. CD31 ингибирует путь активации, 
инициированный взаимодействием тромбоцита 
с коллагеном и тромбином, таким образом регу-
лируется тромбообразование, снижается его ин-
тенсивность [47, 68]. 

На поверхности тромбоцитов представлены 
рецепторы, позволяющие модулировать им-
мунные реакции. Активированные тромбоци-
ты экспрессируют на поверхности хранящийся 
в α-гранулах CD154 и CD40L, связывающихся 
с CD40 на ЭК [8, 127]. Также тромбоциты явля-
ются источником растворимой формы CD40L 
(sCD40L). Содержание sCD40L в пламе крови 
может быть индикатором активации тромбоци-
тов  [84]. CD40L стимулирует экспрессию раз-
личных хемокинов (IL-6, IL-8, MCP-1), молекул 
адгезии (VCAM-1, Р-селектин), тканевого фак-
тора (TF) и тромбомодулина ЭК  [9, 174]. Тром-
боцитарный CD154 может взаимодействовать с 
CD40 на поверхности B-лимфоцитов, усиливая 
продукцию ими иммуноглобулинов [52]. 

Тромбоциты могут секретировать и рецепти-
ровать хемокины, таким образом создавая связь 
между гемостазом и воспалением. На тромбоци-
тах присутствуют функциональные рецепторы к 
C-C и С-Х-С хемокинам (CCR и CXCR соответ-
ственно). К ним относятся CCR1, CCR3, CCR4, 
CXCR4, CXCR6, CXCR7, CX3CR1. Эти рецепто-
ры вовлечены в регуляцию функций тромбоци-
тов: активацию, адгезию, агрегацию [28, 41, 50]. 
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ТАБЛИЦА 1. НЕКОТОРЫЕ РЕЦЕПТОРЫ ТРОМБОЦИТОВ И ИХ ЛИГАНДЫ
TABLE 1. SOME PLATELET RECEPTORS AND ITS LIGANDS

Рецептор 
тромбоцита

Platelet receptor

Лиганд
Ligand

Результат взаимодействия с лигандом
Result of interaction

Молекулы адгезии
Adhesion molecules 

P-селектин (CD62p) 
P-selectin PSGL-1 (CD162) Адгезия к ЭК, лейкоцитам 

Adhesion to endothelial cells, leukocytes 

GPIb (CD42b) vWF, коллаген
vWF, collagen

Адгезия к субэндотелию
Adhesion to subendothelium 

GPIV Коллаген
Collagen

Адгезия к субэндотелию
Adhesion to subendothelium 

GPIIbIIIa  
(CD41/CD61) 

Фибриноген, фибронектин vWF
Fibrinogen, fibronectin, vWF

Адгезия к субэндотелию
Adhesion to subendothelium 

GPIaIIa (VLA-2) Коллаген
Collagen

Адгезия к субэндотелию
Adhesion to subendothelium 

VLA-5 (αα5ββ1) Фибронектин
Fibronectin

Адгезия к субэндотелию
Adhesion to subendothelium 

VLA-6 (αα6ββ1) Ламинин
Laminin

Адгезия к субэндотелию
Adhesion to subendothelium 

Toll-подобные рецепторы
Toll-like receptors

TLR1 
Патоген-ассоциированные  

паттерны 
Pathogen-associated patterns

Активация тромбоцита, агрегация
Platelet activation, aggregation

TLR2 
Патоген-ассоциированные  

паттерны 
Pathogen-associated patterns

Активация тромбоцита, образование тромбоци-
тарно-лейкоцитарных комплексов

Platelet activation, platelet-leukocyte complex 
formation

TLR4 
Патоген-ассоциированные  

паттерны 
Pathogen-associated patterns

Активация тромбоцита
Platelet activation

TLR6 
Патоген-ассоциированные  

паттерны 
Pathogen-associated patterns

Активация тромбоцита
Platelet activation

Рецепторы цитокинов и хемокинов
Cytokines and chemokines receptors

CXCR4 SDF-1 Активация, агрегация, адгезия 
Activation, aggregation, adhesion

CXCR6 CXCL16 Активация тромбоцитов, адгезия 
Platelet activation, adhesion

CXCR7 CXCL11, SDF-1 Сигнал к выживанию тромбоцита, активация
Platelet survival, activation

CCR1 CCL3, CCL5, CCL7 Активация тромбоцитов, агрегация 
Platelet activation, aggregation

CCR3 CCL5, CCL7 Активация тромбоцитов, агрегация 
Platelet activation, aggregation

CCR4 CCL17, CCL22 Активация тромбоцитов, агрегация 
Platelet activation, aggregation

CX3CR1 Фракталкин 
Fractalkine

Активация тромбоцитов, агрегация 
Platelet activation, aggregation
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Рецептор 
тромбоцита

Platelet receptor

Лиганд
Ligand

Результат взаимодействия с лигандом
Result of interaction

Другие рецепторы 
Other receptors

FcγγRIIA Fc-фрагменты антител
Antibody Fc-fragments

Активация тромбоцита 
Platelet activation

PAR-1 Тромбин
Thrombin

Активация тромбоцита 
Platelet activation

PAR-4 Тромбин
Thrombin

Активация тромбоцита 
Platelet activation

P2Y1
АДФ
ADP

Активация тромбоцитов, агрегация 
Platelet activation, aggregation

P2Y12
АДФ
ADP

Костимуляция активации, агрегация тромбоцита 
Platelet costimulation, platelet aggregation

Таблица 1 (окончание)
Table 1 (continued)

На поверхности тромбоцитов экспрессиру-
ются Toll-подобные рецепторы TLR1, TLR2, 
TLR4, TLR6. Активация тромбоцита возможна 
через трансдукцию сигнала TLR2 в случае взаи-
модействия его с бактериями, приводящая к об-
разованию тромбоцитарно-лейкоцитарных ком-
плексов через P-селектин [24, 49]. Полагают, что 
взаимодействие TLR2 с его лигандом приводит к 
запуску PI3K/Akt сигнального пути и активации 
тромбоцита [24]. 

На поверхности тромбоцитов экспресси-
руется FcγRIIA, содержащий активационный 
мотив ITAM. Активация тромбоцитарного Fc-
рецептора повышает концентрацию цитоплаз-
матического Ca2+, что приводит к дегрануляции 
тромбоцита, запуску метаболизма арахидоновой 
кислоты, экстернализации фосфатидилсерина, 
активации GPIIbIIIa [154]. 

Таким образом, тромбоциты экспрессируют 
на своей поверхности различные гликопротеи-
ны. Молекулы адгезии (селектины, интегрины) 
участвуют в адгезии тромбоцита к стенке по-
врежденного сосуда, агрегации тромбоцитов и 
образовании тромба. Другие рецепторы  – TLR, 
рецепторы системы комплемента, хемокиновые 
рецепторы – необходимы для амплификации ак-
тивационного сигнала и высвобождения содер-
жимого тромбоцитарных секреторных гранул, 
участия тромбоцита в иммунных реакциях. 

Тромбоциты: состав
Тромбоциты имеют в своем составе мембран-

ную систему и специфические для тромбоцитов 
секреторные структуры  – гранулы  [216]. Систе-
ма мембран тромбоцита состоит из двух ком-
понентов: открытой каналикулярной системы 
(open canalicular system, OCS), осуществляющей 
связь между цитозолем и окружающей средой, 
и плотной тубулярной системы (dense tubular 

system, DTS). DTS является местом депонирова-
ния ионов кальция и аденилатциклазы, а также 
некоторых ферментов, вовлеченных в активацию 
тромбоцитов, например для метаболизма арахи-
доновой кислоты  – источника тромбоксана А2. 
Вышедший из депо Ca2+ активирует цитозольные 
кальций-зависимые белки, тем самым иниции-
руя активацию самого тромбоцита. Уровень Ca2+ 
контролируется кальциевыми АТФазами, кото-
рые, в свою очередь, регулируются цАМФ. При 
уменьшении цАМФ повышается уровень цито-
зольного Ca2+, и антиагрегантные препараты, на-
правленные на повышение цитозольного цАМФ, 
понижают концентрацию кальция, тем самым 
угнетая процесс активации тромбоцита [168].

Внутреннее содержимое тромбоцитарных гра-
нул довольно разнообразно. Выделяют 3 типа гра-
нул, продуцируемых тромбоцитами: α-гранулы, 
плотные δ-гранулы и лизосомы (λ-гранулы) 
(табл. 2). В первую очередь при дегрануляции вы-
деляются плотные гранулы, затем α-гранулы и ли-
зосомы [168]. Наиболее многочисленны в зрелых 
тромбоцитах α-гранулы. Они являются доволь-
но крупными образованиями (200-400 нм)  [168]. 
Внешняя поверхность мембраны гранул содержит 
адгезионные молекулы и гликопротеины, внутрен-
няя  – различные G-белки, GTP-связывающие 
белки, регулирующие секрецию гранул, мембран-
ные белки и гликопротеины [168]. α-гранулы экс-
прессируют поверхностные белки: CD62p, CD36, 
CD9, CD31, остеонектин, GPIIbIIIa [40, 94, 202], 
аккумулируют крупные белки разнообразной 
функциональности, такие как адгезионные белки, 
коагуляционные факторы, разнообразные цито-
кины и факторы роста про- и антитромботиче-
ские молекулы, адгезионные молекулы  [51, 166, 
196]: СXСL1 (GRО-α), СXСL4 (PF4), СXСL4L1 
(PF4аlt), СXСL5 (ЕNА-78), СXСL7 (PBP), СXСL8 
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(IL-8), СXСL12 (SDF-1α), СXСL14 (BRАK) ССL2 
(MСP-1), ССL3 (MIP-1α), ССL5 (RАNTЕS), 
ССL7 (MСP-3), ССL8 (MСP-2), ССL15, ССL17 
(TАRС), ССL18 (PАRK), ЕGF, HGF, TGF-β, IGF, 
PDGF, VЕGF, ангиостатин, эндостатин, GM-CSF, 
TSP-1, фактор V, βTG, HRGP, плазминоген, PАI 1, 
α1-PI, TFPI, vWF, хондроитин-сульфат, фибро-
нектин, витронектин, P-селектин, СD40L. Эти 
гранулы участвуют в регуляции широкого спектра 
процессов: поддержании гомеостаза, коагуляции, 
развитии воспаления, регуляции ангиогенеза, 
ранозаживлении и прочих. Основные эффекты 
цитокинов, входящих в состав тромбоцитов, в от-
ношении ЭК, указаны в таблице 3. Содержимое 
гранул вариабельно и зависит от типа активации 
дегрануляции. Показано, что про- и антианги-
оненные факторы упаковываются в различные 
α-гранулы  [166] и в зависимости от характера 
внешних воздействий и типа дегрануляции спо-
собны вызывать различные биологические эф-
фекты. 

Плотные гранулы обладают наименьшим раз-
мером (150 нм), содержат меньше белков, но 
имеют в своем составе ионы Са2+, АДФ, АТФ, ги-
стамин и серотонин. Имея кислый рН, плотные 
гранулы склонны аккумулировать моноамины 
и некоторые полициклические лекарственные 
препараты. Их функция заключается в рекру-
тинге других тромбоцитов в процессе агрегации 
и амплификации активации самих тромбоци-
тов  [168]. АДФ и АТФ активируют тромбоциты 
через соответствующие рецепторы, способству-
ют изменению их формы. Серотонин иниции-
рует выход телец Вейбеля–Паладе и взаимодей-
ствие ЭК с лейкоцитами. Помимо этого, плотные 
гранулы являются депо кальция, который необ-
ходим для активации тромбоцитов и запуска ка-
скада тромбообразования.

Третий тип тромбоцитарных гранул – это ли-
зосомы диаметром 175-250 нм. Идентифициро-
вать их можно по кислой фосфатазе или арил-
сульфатазе, также по поверхностным маркерам. 
Лизосомы содержат гликогидролазы и дегидроге-
назы, которые расщепляют гликопротеины, гли-
колипиды и гликозаминогликаны. На мембра-
не плотных гранул и лизосом имеется LAMP1, 
LAMP2, а также CD63 – представитель суперсе-
мейства тетраспанинов, он вовлечен в спрединг 
(распластывание) активированных тромбоци-
тов [61, 73, 92, 168]. 

При повышении цитозольного Ca2+ происхо-
дит высвобождение содержимого тромбоцитар-
ных гранул путем экзоцитоза, аналогичного для 
других секретирующих клеток, то есть при уча-
стии SNARE, Rab-ГТФаз и соответствующих им 
белков. За счет экзоцитоза различных молекул 
возможна смена поверхностных белков тромбо-

цита, что напрямую влияет на их функции. Тром-
боциты способны не только к экзоцитозу, но и к 
эндоцитозу: они способны поглощать молекулы 
извне, например, фибриноген и VEGF [11, 127]. 

Тромбоциты играют важную роль в регуляции 
гемостаза, ангиогенеза, процессе тромбообразо-
вания за счет своего внутреннего состава (табл. 
2). Тромбоциты содержат различные хемокины 
C-X-С (α-хемокины) и C-С групп (β-хемокины), 
которые влияют на функции лейкоцитов и лим-
фоцитов. PF4  – это один из первых хемоки-
нов, обнаруженных в α-гранулах тромбоцитов. 
PF4 так же, как и другой α-хемокин тромбоци-
та  – CXCL5, способствует активации и адгезии 
нейтрофилов к ЭК, привлекает Т-лимфоциты, 
способствует дифференцировке макрофагов. 
Также PF4 ингибирует миграцию, пролифе-
рацию и формирование трубок ЭК  [80, 127]. 
CCL-5 (RANTES), относящийся к провоспали-
тельным β-хемокинам, входит в состав α-гранул 
и внеклеточных везикул тромбоцитов. CCL5 
привлекает, главным образом, активированные 
T-лимфоциты и T-клетки памяти через соответ-
ствующие рецепторы – CCR5 [98, 119]. 

Интерлейкин-1β (IL-1β) секретируется акти-
вированными тромбоцитами как свободно, так 
и в составе МВ, и способствует прикреплению 
нейтрофилов к сосудистой стенке. На поверхно-
сти ЭК конститутивно присутствуют рецепторы к 
IL-1β и взаимодействия ЭК с этим лигандом при-
водят к изменению их фенотипа. В неактивиро-
ванном состоянии тромбоцита IL-1β запасается в 
виде неактивного предшественника – про-IL-1β, 
а при активации быстро преобразуется в актив-
ную форму. Помимо этого, тромбоциты способны 
синтезировать IL-1β de novo на основе матричной 
РНК, полученной от мегакариоцита [127]. 

Основная часть факторов тромбоцита, регу-
лирующих ангиогенез, содержится в α-гранулах. 
Тромбоциты содержат как про-, так и антианги-
огенные факторы. К проангиогенным соедине-
ниям относятся различные ростовые факторы, 
например, VEGF, bFGF, PDGF (табл. 3). К  ан-
тиангиогенным соединениям, содержащимся 
в тромбоцитах, относятся тромбоспондин-1, 
PF4, эндостатин, ангиостатин, ингибитор акти-
ватора плазминогена-1 (PAI-1). В зависимости 
от активационного стимула могут выделяться 
разные факторы. В условиях in vitro было по-
казано, что при стимуляции тромбоцитарного 
рецептора PAR-1 высвобождаются α-гранулы с 
VEGF, а при стимуляции рецептора PAR-4  – с 
эндостатином  [94]. В составе тромбоцитарных 
α-гранул представлены такие ростовые факторы, 
как PDGF, TFG-β, VEGF, EGF и другие  [168]. 
VEGF – это специфический митоген ЭК, повы-
шающий пролиферацию, миграцию и образова-
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ние сосудов. VEGF повышает жизнеспособность 
ЭК за счет стимуляции ими выработки антиа-
поптотического белка bcl-2 и усиления адгезии к 
внеклеточному матриксу. Также VEGF повышает 
проницаемость сосудов путем снижения плотно-
сти контактов между ЭК [37]. 

В тромбоцитах содержится относительно 
большое количество TGF-β. Он способствует за-
живлению поврежденных сосудов, стимулирует 
ангиогенез, регулирует воспалительные реакции. 
Помимо этого, TGF-β участвует в патологиче-
ских процессах: опухолеобразовании, атероскле-
розе. Именно тромбоциты являются основным 
источником плазменного TGF-β. TGF-β выде-
ляется при активации тромбоцитов в виде неак-
тивного комплекса, и после его выхода в плазму 
происходит переход в активную форму [13, 25]. 

В связи с разнонаправленным действием 
TGF-β на ЭК его роль в ангиогенезе остается 
предметом активного изучения. Рецепторами 
TGF-β являются сериновые и треониновые кина-
зы. Выделяют 7 типов рецепторов I типа – ALK1- 7 
(activin receptor-like kinase) и 5 типов рецепторов 
TGF-β II типа. Корецепторами для рецепторов 
TGF-β служат эндоглин и β-гликан (TGF-βR 
III типа). Наибольшее значение для реализации 
влияния TGF-β на ЭК имеют ALK1 и ALK5. Ре-
цептор TGF-β ALK1 и его корецептор эндоглин 
индуцируют внутриклеточные сигнальные пути 

Smad1, Smad5 и Smad8. Взаимодействие TGF-β 
с ALK5 и TβRII индуцирует фосфорилирование 
путей Smad2 и Smad3, AKT, EphB2. Активация 
Ras/Erk MAPK пути важна для миграции ЭК, не-
зависимой от Smad пути [164]. 

Рецепторы ALK1 и ALK5 при связывании 
с лигандом оказывают противоположные эф-
фекты. Активация ALK1 приводит к стимуля-
ции пролиферации и миграции ЭК, стимуля-
ции формирования трубок сосудов  [122, 227]. 
В  TGF- β-стимулированной пролиферации ЭК 
задействованы регуляторы клеточного цикла 
CCT4 и CDC6. Также активация ALK-1 стиму-
лирует экспрессию ЭК генов JunD, CDK5, CCT4, 
CDC6, MMP-10, Ephrin-B1 и P4HA 1 и подавля-
ет экспрессию генов Rac2, integrin aE, ICAM-1 и 
ICAM-2 [129, 215, 218]. Для стимуляции пролифе-
рации ЭК посредством рецептора ALK1 необхо-
дим эндоглин. Отсутствие эндоглина приводит 
к активации воздействия TGF-β через рецептор 
ALK5  [112, 149]. Активация ALK5 ингибирует 
пролиферацию и миграцию ЭК, задействует при 
этом ингибитор дифференциации Id1. Кроме 
того, ALK-5 регулирует межклеточные взаимо-
действия, в частности стимулирует адгезию ЭК, 
экспрессию angiopoietin-like 4, MCP-1, RANTES, 
cadherin и подавляет экспрессию интегрина 
α6  [215]. TGF-β1, активируя ERK-сигнальный 
путь при связывании с ALK5, усиливает экспрес-

ТАБЛИЦА 3. ЭКСПРЕССИЯ БЕЛКОВ НА МЕМБРАНЕ И В СОСТАВЕ ГРАНУЛ ТРОМБОЦИТОВ
TABLE 3. PLATELET GRANULES SURFACE PROTEINS AND ITS INNER PROTEINS

Тип гранул
Granule type

Мембранные белки
Surface proteins

Состав гранул
Granules’ content

αα-гранулы
α-granules

CD62p, GPIIbIIIa, 
CD36, CD9, CD31, 

остеонектин 
CD62p, GPIIbIIIa, 

CD36, CD9, CD31, 
ostonectin

СXСL1 (GRО-αα), СXСL4 (PF4), СXСL4L1 (PF4аlt), СXСL5 
(ЕNА-78), СXСL7 (PBP), СXСL8 (IL-8), СXСL12 (SDF-1αα), 
СXСL14 (BRАK), CXCL16, ССL2 (MСP-1), ССL3 (MIP-1αα), 

ССL5 (RАNTЕS), ССL7 (MСP-3), ССL8 (MСP-2), ССL15, ССL17 
(TАRС), ССL18 (PАRK), IL-1ββ, IL-1αα, ЕGF, HGF, bFGF, TGF-ββ, 

IGF, PDGF, VЕGF, ангиостатин, эндостатин, GM-CSF,  
TSP-1, фактор V, ββTG, HRGP, плазминоген, PАI 1, αα1-PI, TFPI, 

vWF, хондроитин-сульфат, фибронектин,  
витронектин, P-селектин, СD40L, ββ-дефенсин

СXСL1 (GRО-α), СXСL4 (PF4), СXСL4L1 (PF4аlt), СXСL5 
(ЕNА-78), СXСL7 (PBP), СXСL8 (IL-8), СXСL12 (SDF-1α), 

СXСL14 (BRАK), CXCL16, ССL2 (MСP-1), ССL3 (MIP-1α), ССL5 
(RАNTЕS), ССL7 (MСP-3), ССL8 (MСP-2), ССL15, ССL17 (TАRС), 
ССL18 (PАRK), IL-1β, IL-1α, ЕGF, HGF, bFGF, TGF-β, IGF, PDGF, 

VЕGF, angiostatin, endostatin, GM-CSF, TSP-1, factor V, βTG, 
HRGP, plasminogen, PАI 1, α1-PI, TFPI, vWF, chondroitin sulfate, 

fibronectin, vitronectin, P-selectin, СD40L, β-defensin
Плотные δδ-гранулы
Dense δ-granules CD63, LAMP2, CD62p Серотонин, гистамин, АДФ, АТФ

Serotonin, histamine, ADP, ATP
Лизосомы 
(λλ-гранулы)
Lysosomes 
(λ-granules)

LAMP1, LAMP2, CD63 Эндогликозидаза, β-галактозидаза, β-глюкуронидаза 
Endoglycosidase, β-galactosidase, β-glucuronidase
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сию рецепторов SDF CXCR4, CXCR7. Усиление 
экспрессии этих рецепторов способствует адге-
зии, миграции и формированию трубок сосудов 
ЭК, как интактными, так и стимулированными 
SDF-1 ЭК [69]. Вероятно, TGF-β принимает уча-
стие в переключении характера ангиогенеза, по-
скольку показано, что при росте ЭК на коллагене 
TGF-β ингибирует пролиферацию и миграцию 
ЭК, одновременно стимулирует организацию ЭК 
в трехмерные трубчатые структуры [169]. 

Наряду с ангиогенным действием TGF-β 
отмечается его негативное влияние на жизне-
способность ЭК. TGF-β вызывает апоптоз ЭК 
при взаимодействии с ассоциацией рецепторов 
CD222 (R маннозо-6-Р инсулиноподобного фак-
тора роста II) и CD87 (uPA-R – рецептор актива-
тора плазминогена урокиназного типа) [113]. Ак-
тивация сигнальных путей TAK1-JNK/p38MAPK 
совместно с Smad индуцирует апоптоз  [164]. 
Показано, что TGF-β нарушает функциониро-
вание митохондрий ЭК, что сопровождается 
повышением уровня АФК, активацией eNOS и 
снижением мембранного потенциала митохон-
дрий ЭК [188]. Высокие концентрации TGF-β в 
кровотоке сопутствуют развитию тромбоза и кор-
релируют с развитием эндотелиальной дисфунк-
ции [96].

TGF-β оказывает значительное влияние на 
организацию тканей, оказывая влияние на секре-
торную активность и экспрессию поверхностных 
молекул ЭК. Показано, что TGF-β стимулирует 
продукцию ЭК IL-6 и IL-8, что способствует меж-
клеточной организации и развитию ткани  [17, 
44]. Кроме того, TGF-β оказывает значительное 
влияние на адгезивность ЭК и взаимодействие 
ЭК с компонентами межклеточного матрикса. 
В частности, TGF-β стимулирует экспрессию ЭК 
PDGF, адгезионных молекул N-cadherin, α-SMA 
(α-smooth muscle actin, задействован во взаимо-
действии с коллагеном), интегринов, продукцию 
коллагенов IV и V типов, фибронектина и вимен-
тина  [170, 200], влияет на способность ЭК раз-
рушать межклеточный матрикс за счет снижения 
продукции ЭК tPA и uPA, повышения продукции 
ингибитора активатора плазминогена и ММР-
9  [21, 169]. Такое изменение ЭК под влиянием 
TGF-β указывает на возможную трансформацию 
ЭК в коллаген-продуцирующие миофибробла-
сты, что вносит вклад в патологические измене-
ния ЭК, в частности при стенозе аорты [199]. 

Участие TGF-β в стимуляции эпителиально-
мезенхимальной трансформации является еще 
одним механизмом влияния TGF-β на форми-
рование тканей. Эпителиально-мезенхимальная 
трансформация представляет собой переключе-
ние развития ЭК в направлении мезенхималь-
ных клеток и характеризуется потерей характер-

ных для ЭК маркеров: PECAM-1, VE-кадгерин, 
VEGFR, Tie-2, потерей межклеточных контактов 
и приобретением ЭК инвазивной способности и 
устойчивости к апоптозу. При этом оказывают-
ся задействованы сигнальные пути MAPK/ ERK, 
PI3K, p38mapk  [97, 220]. Трансформация такого 
типа может способствовать ангиогенезу и фор-
мированию тканей, в том числе при эмбриоге-
незе, способствуя формированию мезенхималь-
ной оболочки вновь- образованных сосудов. 
С другой стороны, этот же механизм играет роль 
в формировании фиброза [151, 195] и потере эн-
дотелиальной выстилки сосудов с последующим 
нарушением проницаемости сосудов и утратой 
функциональности тканей [197]. 

Таким образом, TGF-β в зависимости от 
микроокружения может проявлять как проан-
гиогенную, так и антиангиогенную функцио-
нальную активность, принимать участие как в 
нормальном, так и аномальном развитии тканей. 
Тромбоциты секретируют разнообразные по при-
роде вещества, выполняющие в организме чело-
века различные функции: гемостаз, регуляцию 
ангиогенеза, защиту от патогенов. Секреции и 
изменению фенотипа тромбоцитов предшествует 
процесс активации. 

Активация тромбоцитов и их взаимодействие 
с эндотелием

В покоящемся состоянии ЭК экспрессируют 
эктонуклеозидтрифосфатдифосфогидролазу-1 
(CD39), которая превращает АТФ в аденозин 
и, таким образом, предотвращает активацию и 
агрегацию тромбоцитов. Помимо этого, ЭК син-
тезируют оксид азота (NO), ингибирующий экс-
прессию тромбоцитом P-селектина и GPIIbIIIa. 
Простациклин (PGI2) эндотелия также препят-
ствует активации тромбоцитов [48, 159]. 

Активация тромбоцитов может быть вызвана 
компонентами субэндотелия (коллаген, vWF), 
тромбином, адреналином, АДФ, АТФ. Серино-
вая протеаза тромбин активирует тромбоциты 
через PAR1 и PAR4 рецепторы [102]. Активация 
тромбоцита также может быть инициирована вза-
имодействием тромбоцитов с белками системы 
комплемента. На тромбоцитах есть рецепторы 
CR2, CR3, CR4, C1qR и рецепторы для факторов 
D, H и для С1-ингибитора. Тромбоциты могут ак-
тивироваться продуктами секреции других тром-
боцитов (тромбоксаном-А2, серотонином, АДФ, 
АТФ). Действие всех активаторов опосредуется 
через Ca2+ [58, 156]. 

Во время активации тромбоциты меняют 
свою морфологию, высвобождают внеклеточные 
везикулы и содержимое своих гранул, изменяют-
ся физико-химические свойства их мембран [15]. 
Начальные этапы адгезии тромбоцитов к повреж-
денной сосудистой стенке зависят от взаимодей-
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ствия тромбоцитарных комплексов GPIb-IX-V 
с vWF и GPVI с коллагеном. Взаимодействие 
данных комплексов со своими лигандами при-
водит к активации других мембранных молекул 
тромбоцита, и тем самым происходит амплифи-
кация активационного сигнала. При поврежде-
нии сосуда vWF связывается через свой А3 домен 
с коллагеном субэндотелия. Далее субъединица 
GPIb комплекса GPIb-IX-V взаимодействует с А1 
доменом vWF. При связывании GPIb-IX-V с цир-
кулирующим в плазме крови vWF запускается ак-
тивация киназ семейства Src с дальнейшим фос-
форилированием белков сигнального каскада, 
что результируется повышением цитозольного 
Ca2+. Связь другого интегрина, GPVI, с коллаге-
ном запускает активацию киназ Src и Syk и при-
водит к повышению Ca2+ в цитозоле [88]. За про-
цессом адгезии следует процесс распластывания 
(спрединг) тромбоцитов на месте повреждения 
сосуда. Распластанные тромбоциты связывают 
плазменные vWF и фибриноген, тем самым при-
влекают новые тромбоциты на образующийся 
тромб. Таким образом формируется тромбоци-
тарный тромб  – соединенные между собой фи-
бриногеном активированные тромбоциты, при-
крепленные к сосудистой стенке. В дальнейшем 
тромб стабилизируется фибрином. Усиление 
адгезии к сосуду достигается за счет интегринов 
GPIaIIa (α2β1), α5β1, α6β1 [88, 159]. 

Влияние тромбоцитов на ангиогенез
Тромбоциты содержатся в кровотоке и посто-

янно контактируют с эндотелиальной выстилкой 
сосудов. Многие аспекты функционирования 
тромбоцитов, связанные с тромбообразованием 
и ранозаживлением, изучены довольно подроб-
но. В настоящее время показано, что тромбоциты 
играют важную роль в формировании и поддер-
жании гомеостаза сосудистого русла. В некоторых 
патологических состояниях, таких как сердечно-
сосудистые патологии и онкология, роль тромбо-
цитов в регуляции ангиогенеза ярко выражена и 
может способствовать как развитию патологии, 
так и компенсации повреждения сосудистого 
эндотелия. Механизмы взаимодействия тромбо-
цитов и ЭК в норме и при патологии являются 
предметом интенсивного изучения. Тромбоциты 
конститутивно выделяют факторы, поддержи-
вающие целостность эндотелиальной выстилки 
сосудов, такие как сфингозин-1-фосфат (S1P), 
серотонин, VЕGF, тромбоспондин  [20], что на-
правлено на предотвращение активации тромбо-
цитов. В контактном взаимодействии ЭК с тром-
боцитами ключевую роль играют P-селектин и 
СD40/СD40L [26, 179]. 

Тромбоциты оказывают влияние на процесс 
формирования сосудов уже на ранних этапах, 

привлекая предшественников ЭК в места регене-
рации сосудистого русла и активного ангиогенеза. 
Это достигается за счет стимуляции экспрессии 
на клетках-предшественниках IСАM-1, секреции 
ими простациклина (PGI2) и MСP-1, что позво-
ляет им активно взаимодействовать со зрелыми 
ЭК [178]. Тромбоциты являются источником ан-
гиогенных факторов VЕGF, PDGF, bFGF, MMPs, 
гепараназы. Продуцируемый тромбоцитами 
СD40L стимулирует ангиогенез [39, 135]. Доволь-
но давно было показано, что тромбоциты стиму-
лируют пролиферацию, формирование трубок 
сосудов при непосредственном контакте тромбо-
цитов и ЭК в условиях in vitrо [128, 160]. В условиях 
оксидативного стресса тромбоциты значительно 
снижают апоптоз ЭК, способствуют повышению 
жизнеспособности ЭК и ангиогенезу. Одним из 
механизмов реализации этого эффекта является 
поглощение ЭК путем эндоцитоза тромбоцитар-
ных митохондрий в виде свободных органелл или 
в составе тМВ с последующей активацией анти-
апоптозного гена сурвивина (survivin) в ЭК [99]. 
Активированные тромбоциты усиливают секре-
цию uPА и tPА, продукцию мРНК и экспрессию 
ЭК рецептора урокиназы (uPАR), мембранной 
металлопротеиназы MT1-MMP, и ферментов 
ММР-1 и ММР-2, что указывает на повышенную 
матрикс-деградирующую способность ЭК под 
влиянием активированных тромбоцитов  [132]. 
Показано, что тромбоциты являются важным ин-
дуктором ангиогенеза и инвазии при опухолевом 
росте  [150]. Среди антиангиогенных факторов 
тромбоцитов можно назвать эндостатин, TSP- 1, 
ингибитор активатора плазминогена (PАI-1) и 
ангиостатин. Также тромбоциты продуцируют 
значительные количества провоспалительного 
цитокина IL-1β, хемокины, PF4 и RАNTЕS [32, 
71, 158]. Есть предположение, что действие тром-
боцитарных антиангиогенных факторов не ока-
зывается решающим  [32]. Стоит отметить, что 
эффект активированных тромбоцитов на анги-
огенез скорее неоднозначный  [160]. Тромбоци-
ты усиливают продукцию ЭК цитокинов IL-6 и 
IL-8  [114], формируя провоспалительный фено-
тип ЭК. Наряду с данными о стимулирующем 
влиянии СD40L на ангиогенез [39, 135], показано 
ингибирующее влияние СD40L тромбоцитов на 
VЕGF-опосредованный ангиогенез за счет сни-
жения продукции ЭК NО, усиления продукции 
активных форм кислорода и снижения VЕGF-
индуцированной миграции ЭК  [194]. Другие 
данные указывают на то, что тромбоциты за счет 
контактных взаимодействий (СD41/СD61) и при 
значительном участии TGF-β стимулируют апоп-
тоз ЭК мозговых микрососудов [210]. Таким об-
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разом, эффекты тромбоцитов на ангиогенез оста-
ются недостаточно изученными. 

Микровезикулы тромбоцитарного происхождения 
Микровезикулы размером от 100 до 1000 нм 

представляют собой сферические структуры с 
билипидной оболочкой, содержащими часть 
клеточной мембраны и внутренней среды клет-
ки-источника. Микровезикулы служат посред-
никами в сигналинге между клетками, участвуют 
в процессах воспаления, коагуляции, апоптоза, 
регулируют пролиферацию и дифференцировку 
клеток [120, 130, 140]. Они способны проникать в 
различные области и ткани, преодолевая даже ге-
мато-энцефалический барьер  [163]. Циркулиру-
ющие МВ сохраняют на своей поверхности мар-
керы родительской клетки и заключают внутри 
разнообразные белки, липиды и нуклеиновые 
кислоты, регулирующие процессы внутри орга-
низма как при нормальной жизнедеятельности, 
так и при патологии [124]. Внеклеточные везику-
лы активно изучаются для применения в диагно-
стике, а также для разработки методов лечения 
различных заболеваний.

Микровезикулы отщепляются от внешней 
мембраны клетки при физиологических и па-
тологических процессах  [35]. Мембрана МВ со-
держит фосфатидилсерин, однако в связи с тем, 
что они не имеют АТФ-зависимых механизмов 
поддержания липидной асимметрии мембраны, 
данный фосфолипид присутствует на мембране 
постоянно и поэтому может участвовать в про-
цессах коагуляции [15, 140]. Механизмы форми-
рования МВ изучены недостаточно. Показано, 
что в специфической упаковке МВ участвуют ри-
бонуклеопротеин А2В1 (hnRNPА2B1), hnRNPQ 
и hnRNPU, белок Аgо2 [177]. 

В зависимости от состояния тромбоцита и его 
микроокружения, МВ различаются внутренним 
содержимым, характеристиками мембранно-
го состава и функциональной активностью  [70, 
124]. При активации тромбоцитов происходит 
стимуляция их дегрануляции [63, 224]. Традици-
онными методами активации тромбоцитов слу-
жит воздействие растворимых факторов тром-
бина, тромбоксана А2, АДФ, а также связывание 
коллагена и vWF с гликопротеинами тромбо-
цита. В дегрануляции участвуют везикул-ассо-
циированные мембранные пептиды (VАMPs), 
хореин  [173], белки семейства септинов (Sеpt). 
Последние отвечают за экзоцитоз и адгезию, от-
щепление α-гранул [144]. Установлено, что такие 
препараты, как статины, аспирин, антиоксидан-
ты снижают количество тМВ в кровотоке [19].

Впервые внеклеточные везикулы перифе-
рической крови были описаны исследователем 
Вульфом и были названы «тромбоцитарной пы-
лью», при этом обладавшей прокоагуляторной 

активностью  [213]. тМВ могут воздействовать 
на различные типы клеток, участвуя в регуляции 
воспаления, иммунного ответа, активации си-
стемы комплемента и многих других процессов. 
тМВ представляют интерес в качестве терапев-
тического агента в связи с их большой биологи-
ческой активностью, нетоксичностью, стабиль-
ностью, способностью переносить различные 
медиаторы и генетический материал (ДНК, РНК, 
микроРНК, мРНК) [10, 147].

Тромбоцитарные МВ для изучения в условиях 
in vitrо получают чаще всего путем сбора супер-
натанта, полученного после кратковременного 
культивирования тромбоцитов крови. Тромбо-
цитарные МВ периферической крови сохраняют 
поверхностные антигены, характерные для клет-
ки-источника. Они несут на своей поверхности 
такие маркеры, как GPIb-α (CD42b), P-селектин 
(CD62p), GPIIb (CD41), GPIIIa (CD61), CD154 
(CD40L)  [16, 63, 163]. Маркеры аннексин V, 
СD63 и СD40L не могут быть использованы как 
индивидуальные маркеры тМВ, поскольку толь-
ко около половины циркулирующих тМВ их 
экспрессируют  [78]. В зависимости от стимула, 
активирующего тромбоциты, популяции тМВ 
могут различаться по количеству и экспрессиру-
емым молекулам. Например, было показано, что 
активированные тромбином и коллагеном тром-
боциты экспрессируют GPIIb/IIIa, а тМВ, акти-
вированных белками системы комплементом,  – 
нет. Также было показано, что возможен разный 
уровень экспрессии P-селектина и выставления 
фосфатидилсерина в зависимости от активирую-
щего стимула [65, 157]. 

Одно из наиболее изученных свойств тМВ  – 
это регуляция гемостаза. На внешнем слое мем-
браны тМВ несут фосфатидилсерин, способ-
ствующий абсорбции плазменных факторов 
свертывания крови на мембране. Было показано, 
что содержание фосфатидилсерина на поверхно-
сти тМВ выше, чем на мембране тромбоцита, что 
значительно повышает прокоагуляторный по-
тенциал частиц  [1, 181]. Также тромбоцитарные 
везикулы имеют в составе PF4, который, помимо 
функции привлечения иммунных клеток и угне-
тения ангиогенеза, способен связываться с гепа-
рин-подобными молекулами, тем самым способ-
ствуя коагуляции  [74]. Тем не менее возможно, 
что тМВ способны проявлять и антикоагулятор-
ные свойства, активируя белок C, ингибирую-
щий фактор свертывания крови Va [182].

Тромбоцитарные МВ предположительно мо-
гут участвовать в иммунных реакциях [15]. В со-
став тМВ входят хемокины PF4, CCL5, CXCL7, 
IL-1β что указывает на возможную роль тМВ 
тромбоцитов в воспалительных реакциях  [34, 
74]. Тромбоциты содержат мРНК, микроРНК, 
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полученные от мегакариоцитов, и собственный 
трансляционный аппарат для синтеза веществ, 
необходимых для гемостатических и иммунных 
реакций  [118]. Тромбоциты способны переда-
вать микроРНК своим внеклеточным везику-
лам  [190]. Было продемонстрировано, что ми-
кроРНК 126- 3p (miR-126-3) тМВ доставляется 
макрофагам человека. Данная малая ядерная 
РНК способна регулировать экспрессию генов 
макрофага [108, 174]. Было показано, что другая 
микроРНК, содержащаяся в тромбоцитарных 
экзосомах, miR-223, способна препятствовать 
синтезу интерлейкинов в ЭК, тем самым про-
являя противовоспалительный эффект, а также 
снижать экспрессию ICAM-1 на ЭК in vitro, след-
ствием чего была сниженная адгезия лейкоцитов 
к ЭК [190].

Микровезикулы могут оказывать свой эффект 
как в локальном микроокружении, так и переме-
щаясь на относительно большие расстояния [15]. 
Доставка содержимого внеклеточных везикул 
возможна путем простого слияния мембран, 
клатриновым или кавеолиновым эндоцитозом 
целевой клеткой  [141]. Микровезикулы тромбо-
цитов способны изменять фенотип клеток и та-
ким образом реализовывать свои функции. тМВ 
задействованы не только в коагуляции, но и дру-
гих процессах, например, в иммунных реакциях 
и предположительно ангиогенезе. Также тромбо-
цитарные внеклеточные везикулы могут быть за-
действованы при разных патологиях, в том числе 
преэклампсии [1, 6, 46]. 

Взаимодействие тромбоцитарных МВ с ЭК
Первоначально роль тМВ была показана в 

тромбообразовании. Имеются данные как о 
прокоагулянтной активности тМВ (причем она 
значительно превышает таковую самих тромбо-
цитов), так и антикоагулянтной [64, 181]. В насто-
ящее время очевидно их участие в разнообразных 
процессах. Повышенный уровень МВ в перифе-
рической крови отмечается при ряде патологи-
ческих состояний: остром инфаркте миокарда, 
диабете, атеротромбозе и других сердечно-сосу-
дистых патологиях, гипертензии, преэклампсии 
беременных, метаболическом синдроме, инфек-
циях, аутоиммунных и онкологических патоло-
гиях  [121, 163]. Микровезикулы, участвующие 
в патогенезе преэклампсии, имеют разное про-
исхождение (ЭК, тромбоциты, синцитиотрофо-
бласт), но отмечается значительное снижение 
содержания именно тМВ в кровотоке женщи-
ны, что, вероятно, связано с патогенезом эндо-
телиальной дисфункции  [209]. Эндотелиальная 
дисфункция сопровождает и многие сердечно-
сосудистые патологии. Таким образом, циркули-
рующие МВ могут являться важным маркером и 
медиатором эндотелиальной дисфункции.

тМВ могут оказывать действие на различ-
ные клетки несколькими способами: активируя 
поверхностные рецепторы, перенося поверх-
ностные молекулы на клетку-реципиент, а так-
же доставляя внутреннее содержимое везикул в 
клетку-реципиент  [63]. При этом после погло-
щения ЭК тМВ присоединяются к эндосомам и 
лизосомам ЭК, а не к плазматической мембра-
не [67].

Действие тМВ в отношении ЭК разнообраз-
но – они могут способствовать или препятство-
вать воспалению, ангиогенезу, развитию окси-
дативного стресса. тМВ активно стимулируют 
ангиогенез посредством содержащимися в них 
медиаторов VЕGF, bFGF, PDGF  [31], стимули-
руют ферментативную активность MMP-2 ЭК, 
продукцию NО, пролиферацию, миграцию ЭК и 
образование трубок сосудов, препятствуют апоп-
тозу ЭК [31, 103, 105, 121, 131, 162, 163], причем 
эти эффекты зависят в значительной степени и от 
липидной составляющей МВ [105]. В частности, 
арахидоновая кислота препятствует апоптозу и 
стимулирует пролиферацию ЭК [29, 63].

Одновременно описаны механизмы негатив-
ного влияния тМВ на состояние эндотелиаль-
ной выстилки сосудов. Так, тМВ здоровых доно-
ров стимулируют секрецию ЭК цитокинов IL-6, 
IL- 8, экспрессию адгезионных молекул IСАM-1, 
VСАM-1, Е-селектина на ЭК, адгезионных мо-
лекул семейства СD11 на моноцитах, способ-
ствуя таким образом адгезии моноцитов к ЭК и 
развитию воспаления  [29, 63]. тМВ пациентов с 
инфарктом миокарда стимулируют продукцию 
ЭК супероксидного аниона, экспрессию IL-6, 
TNFα, и фактора NF-κB, стимулируя таким об-
разом оксидативный стресс и воспаление  [29, 
63]. RАNTЕS в составе тМВ способствует фор-
мированию атеросклеротических бляшек на эн-
дотелии и рекрутингу лейкоцитов  [121]. Одним 
из механизмов воздействия МВ на индукцию 
эндотелиальной дисфункции является снижение 
активности NО-синтазы [121]. Таким образом, в 
условиях развития патологии, тМВ могут способ-
ствовать формированию провоспалительного и 
протромботического фенотипа ЭК. 

Значительный вклад в функциональную ак-
тивность тМВ в отношении ЭК вносят кодиру-
ющие и некодирующие мРНК, содержащиеся в 
тМВ в значительном количестве  [76, 163, 177]. 
В  настоящий момент выявлена роль некоторых 
микроРНК как в поддержании нормального 
функционального состояния ЭК, так и в раз-
витии патологий. Самыми многочисленными 
микроРНК в составе тМВ являются miR-142, 
miR- 223, lеt-7 семейство, miR-185, miR-126, 
miR- 103, miR-142-3p и miR-92а  [166]. Также 
тромбоцитарные везикулы содержат miR-140, 
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miR- 221, miR-222, miR-296, miR-96, регулирую-
щие ангиогенез при попадании в ЭК. Стимулиру-
ющий эффект тМВ на пролиферацию и миграцию 
ЭК ассоциирован с ростом содержания miR-126 
и проангиогенных факторов в активированных 
тМВ  [189]. МiR-lеt-7а в составе тМВ подавляет 
синтез тромбоспондина в ЭК, что стимулирует 
образование ими трубок сосудов [177]. С другой 
стороны, miR-96 и miR-26а тМВ специфически 
ингибируют трансляцию Р-селектина и PDGFR в 
HUVЕС, препятствуя миграции ЭК, образованию 
трубок сосудов и ранозаживлению [229]. Перенос 
miR-142-3p из тМВ в ЭК вызывает аномальную 
пролиферацию ЭК и способствует развитию эн-
дотелиальной дисфункции [18, 177]. Комплексы 
Аgо2-miR-223  [166] в составе тМВ регулируют 
экспрессию ЭК-рецептора инсулин-подобного 
фактора-1 (IFG1R), стимулируют апоптоз ЭК и 
ингибируют ангиогенез  [20, 63, 166, 177]. Роль 
микроРНК в составе тМВ в развитии опухолей 
также неоднозначна. Стимуляция ангиогенеза и 
усиление пролиферативной и инвазивной актив-
ности опухолевых клеток под действием тМВ [95] 
способствуют развитию опухоли. Одновременно 
есть данные о стимулирующем действии тМВ на 
апоптоз опухолевых клеток, что может вносить 
вклад в ограничение опухолевого роста  [111]. 
Состав микроРНК в тМВ вариабелен: провос-
палительные (тромбопоэтин, тромбин, TNFα) 
и противовоспалительные (аденозин) медиа-
торы способствуют формированию различных 
по составу микроРНК МВ  [177]. Недостаточное 
понимание механизмов регуляции упаковки 
микроРНК в МВ препятствует использованию 
тМВ в качестве средства избирательной доставки 
микроРНК в клетки. 

Активация внутриклеточных механизмов ре-
гуляции тромбоцитами и их МВ в клетках-ми-
шенях, в том числе и в ЭК, является предметом 
интенсивного изучения (табл. 3)  [124]. Ключе-
вую роль в реализации биологических эффектов 
МВ после их поглощения клеткой-реципиентом 
играет PI3K сигнальный путь. Экспрессиро-
ванные в МВ FаsL и TRАIL регулируют апоп-
тоз клетки-мишени. Такие элементы тМВ, как 
GPIbα, GPIIb/IIа, P-селектин и СD40L акти-
вируют в клетке-мишени путь NF-kB, регули-
рующий многие процессы в клетке, в том числе 
воспаление  [124]. PI3K-Аkt-сигнальный путь 
контролирует архитектуру филаментов цито-
скелета и ее перестройку, участвует в регуляции 
пролиферации, дифференцировки, апоптоза и 
транспорта глюкозы в клетку. Активацию этого 
пути могут инициировать микроРНК, содержа-
щиеся в МВ [124]. Проангиогенные компоненты 
тМВ активируют в ЭК внутриклеточные мес-
сенджеры Srс, PI3K и ЕRK сигнальные пути [31, 
121]. Активность NО-синтазы ЭК, являющейся 
важным регулятором ангиогенеза, контролиру-

ется такими ферментами внутриклеточного сиг-
налинга, как ЕRK1/2, PI3K, NF-kB  [121, 124]. 
В самих тромбоцитах и их МВ PI3K участвует в 
агрегации тромбоцитов и формировании тромба, 
высвобождении кальция, реализации экзоцито-
за  [115]. Для агрегации тромбоцитов вследствие 
связывания GPIbа элементов тромбоцитов с фи-
бриногеном, с молекулой ЭК СLЕС-2 критиче-
ское значение имеет Syk-киназа [33, 176].

Таким образом, состав тМВ неоднороден и за-
висит от способа активации тромбоцитов. Это, 
в свою очередь, определяет неоднозначные, как 
проангиогенные, так и антиангиогенные, эффек-
ты тМВ в отношении эндотелия.

Заключение
В заключение необходимо отметить хорошо 

описанную к настоящему времени роль тром-
боцитов в поддержании гомеостаза сосудистого 
русла и их тромбогенный потенциал. Вместе с тем 
стоит также заострить внимание на регуляторной 
активности тромбоцитов за счет экспрессии ими 
широкого спектра поверхностных рецепторов 
и содержания большого количества цитокинов 
с оппозитным эффектом в отношении клетки-
мишени: про- и антиангиогенные, про- и анти-
воспалительные. В связи с этим, в зависимости 
от сигналов микроокружения тромбоциты могут 
участвовать как в стимуляции, так и в подавле-
нии ангиогенеза.

Тромбоцитарные МВ, представляющие собой 
наиболее распространенный тип внеклеточных 
везикул плазмы крови, являются довольно гете-
рогенной популяцией, играющей важную роль 
в регуляции гемостаза, ангиогенеза, процессе 
тромбообразования. Они содержат в своем соста-
ве различные биологически активные вещества, 
способные напрямую влиять на ЭК, изменяя их 
свойства и функции. Тромбоцитарные МВ со-
храняют фенотипические особенности, прису-
щие тромбоцитам. При этом, в зависимости от 
микроокружения, тромбоцит образует разные 
по фенотипу, составу и функциональной нагруз-
ке тМВ. Вероятно, тМВ являются дополнитель-
ным эффективным способом их взаимодействия 
с окружающими клетками. Но вариабельность 
эффектов тромбоцитов и их МВ, разнообразие 
задействованных внутриклеточных механизмов 
в сочетании с недостаточной исследованностью 
этих аспектов, делают затруднительным их прак-
тической использование в настоящее время. Ан-
гиогенез, в свою очередь, является сложно-ско-
ординированным биологическим процессом, в 
регуляции которого задействованы клетки раз-
личной природы и разнообразные медиаторы. 
В связи с этим необходимы дальнейшие исследо-
вания для выявления роли тромбоцитов и их МВ 
механизмах поддержания гомеостаза сосудистого 
русла и ангиогенезе в норме и при патологии.
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