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Pesrome

benku cemeiictBa VEGF ywacTByl0OT B pa3BUTUM MHOTHUX KJIETOYHBIX
TOMYJISILAIA: AHIOTENUATBHBIX KJIETOK, MOHOIIMTOB M Makpo(aros, CTBOJOBBIX
KJIETOK, OITyXOJIEBBIX KJIETOK, MBIIIEYHBIX KJIETOK CTEHOK COCYAOB, KJIETOK
TpoobacTa u B 1eJIOM JHOOBIX KIETOK, dKcIpeccupyromux peuentopsl K VEGF.
Hapyuienus, 3aTparusaromue npoaykuuto 6enkoBs VEGF u npoBenenne curuanon
OT HUX NPHUBOASIT KO MHOTMM IATOJOTMYECKUM COCTOSHHUSIM, B TOM YHUCIE K
aHOMAJIUSIM pa3BUTHUS TulalleHThl. KieTku TpodoOiacta SBISIOTCS OCHOBHOM
NOMyJISiIMeNd KJIETOK, Gopmupyloied miuaneHty. OHM BOBJIEYEHBI B IPOLIECCHI
cekpeuun u peuenuun VEGF, dakropa, HeoOxomumoro st obecnieyeHuUs
aHruorene3a. HecMoTpsi Ha 3TO, Ha JaHHBIK MOMEHT B JIMTEPAType HENOCTATOYHO
JAHHBIX 0 BIUSHUM npoBeseHus: curHaiioB o VEGF B kietkax Tpogobiacta Ha ux
byHKIMOHATBHBIE 0cOOeHHOCTH. Cpenin KIETOK OKpYX)eHUs TpodobaacTa, KOTOphIE
MOT'YT BO3/ICMICTBOBATh HA UX aKTUBHOCTH B XOJ€ OEPEMEHHOCTH OCOOOMU TpyIIon
ABJIAIOTCS. MATEPUHCKUE UMMYHHBIE KJIETKH, B yacTHOCTH NK-knetku. [Ipunumas
BO BHHMAaHHME BBICOKYIO 4HCICHHOCTh NK-kjaeTok B JenuayaibHON 000JI0YKe,
HEO0OXOIMMO YYUTHIBATh UX BKJIAJ B U3MEHEHUE (eHOTHNA KIETOK Tpodobdaacta. B
HACTOSIIIIEM HCCIIEOBaHMM Hu3yyanach 3kcipeccuss NK-kimeTkamu W KieTKaMu
tpodobnacta 6enxkoB MICA u MICB, a Takxke peuenrtopa CD105. Moneky:b
MICA u MICB sBisitoTcsl MapKepaMu CTpecca M IMO3BOJISIIOT CYAUTh O
xu3HecrocooHoctu kierok. Penentop CD105 skcnpeccupoBaH Ha MOBEPXHOCTU
HEKOTOPBIX MOMYJISIMI KIETOK M y4acTByeT B Iepefadye CHurHaiga oT OeJIKoB
cemeiictBa TGFB. B wacTHOCTH, MOKa3aHO, YTO SHAOIJIMH PETYJIUPYET CUTHAIUHT
or TGFP myrem Hanpapienusi curHaia dyepe3 nmytu SMAD2/3 unu SMAD1/5/8.
OHJOIJINH, COTJIACHO JTUTEPaType, UHTUOUPYET CUTHAIIMHT, 3aJICHCTBYIOINN OEI0K
SMAD3. Urpaer nu 3HAOMMH Ty e poiib B ciiydae NK-kiierok u tpododiacrta
HEU3BECTHO. MI3yueHne N3MEHEHNI B SKCIIPECCUM SHOTIIMHA SIBJISIETCS AKTYyaJlbHOU
npobiemoii, mockonbky curhaibsl oT TGFP Heo6xomumel npu nuddepeHmpoBKe
nonyjisiuuid Tpododiacta, a HapyUIeHUS B MEXaHU3MaX CHUTHAJIMHTA MOTYT
NPUBOJNUTH K HEBBIHAIIMBAHUIO. B pe3ynbrare McCienoBaHUs Mbl MMOKa3aJH, YTO
VEGF wurpaetr posib B peryysiiiuu akTUBHOCTH TpodoOiacta M eCcTeCTBEHHBIX
kuuiepoB. B wactHocTu, aenpuBauus VEGF-A MOHOKIIOHaNBbHBIMU aHTUTEIAMHU
MPOTUB ATOTO IUTOKHWHA TMPHU COKYJIbTUBUpOBaHMHM Tpodobiacta u NK-kiertok
MPUBOAUT K yrHeTeHuro 3kcrpeccuu CD105 obenmu momynsiiusiMu kietok. [Ipu
TOM CyTOYHas WHKyOaiusa tpodobdinacta ¢ anturenamu Kk VEGF He BbI3bIBana
M3MEHEHUN B UX YCTOWYHUBOCTUA K LUTOTOKCHUYECKOW AKTUBHOCTH €CTECTBEHHBIX
KWIIEpOB. BmecTe mosrydeHHbIE Pe3ysbTaThl TOBOPSAT O TOM, YTO JENpPUBaLUsA
VEGF npuBoaut x 3HaYMMBIM U3MEHEHHSAM B pereniuu 0enkoB cemeiictBa TGF[3
KJIeTKamMH Tpo00J1acTa U €CTECTBEHHBIMHU KUJUIEPAMHU.

Kmouessbie cioBa: antiVEGF, CD105, sugormun, NK-kitetku, Tpodobiact,
TGFp.



Abstract

Vascular Endothelial Growth Factors (VEGFs) are a group of proteins that
involved in the development of various cell types, including endothelial cells,
monocytes, macrophages, stem cells, tumor cells, vascular smooth muscle cells,
trophoblast cells, and other cells that express VEGF receptors. Pathological
conditions, such as abnormalities in placental development, can be caused by
disruptions in the production and signaling of VEGFs. Trophoblast cells play a
significant role in placental formation and are essential for angiogenesis due to their
secretion and reception of VEGF. However, there is a lack of information in the
literature regarding the influence of VEGF signaling in trophoblast cells on their
functional characteristics. Maternal immune cells, particularly natural killer (NK)
cells, have been shown to affect the activity of trophoblasts during pregnancy. Given
the high abundance of NK cells in the decidual tissue, it is important to consider
their potential influence on the phenotypic changes in trophoblast cells. In this study,
we investigated the expression of MICA, MICB, and CD105 proteins by NK cells
and trophoblast cells. MICA and MICB are stress markers that allow us to assess
cell viability. CD105 is a receptor that is expressed on the surface of various cell
types and plays a role in signal transmission from TGFB family proteins. In
particular, endoglin has been shown to regulate signaling from TGFf by directing
signals through the SMAD2/3 or SMAD1/5/8 pathways. According to the literature,
endoglin inhibits signaling involving SMAD3. However, it has not yet been
determined whether endoglin plays a similar role in NK cells and trophoblasts. The
investigation of changes in endoglin expression is a significant issue, as signals from
TGFp are essential for the differentiation of trophoblast cells. Disruption of TGF
signaling can lead to pregnancy complications and miscarriage.

We have demonstrated that VEGF plays a role in regulating the activity of
trophoblasts and NK cells. In particular, treatment with neutralizing monoclonal
antibodies to VEGF-A resulted in inhibition of the expression of CD105, a VEGF
coreceptor, on trophoblasts and NK cells under co-culture conditions. However,
pretreatment of trophoblasts with anti-VEGF antibodies did not alter their resistance
to the cytotoxic activity of NK cells. Taken together, these findings suggest that
inhibition of VEGF signaling results in significant changes in the reception of TGF[3
family proteins by trophoblasts and natural Killer cells.

Keywords: antiVEGF, CD105, endoglin, NK cells, trophoblasts, TGFp.
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1 Introduction

Members of the VEGF family of proteins regulate vascular growth [3]. Many
pathological conditions, including abnormalities of placenta development, are
associated with complications in the production of VEGF proteins and the
transmission of signals from them [22]. There are three types of VEGF receptors:
VEGFR1, which binds VEGF-A, VEGF-B, PIGF, and VEGF-F; VEGFR2, which
binds VEGF-A, VEGF-E, VEGF-C, and VEGF-D; and VEGFR3, which binds
VEGF-C and VEGF-D [28]. These receptors cause the activation of different
signaling pathways in cells. The activation of VEGFR1 and VEGFR2 receptors is
involved in the process of angiogenesis, both physiological and pathological, while
VEGFR3 regulates the process of lymphangiogenesis [39].

Speaking about the participation of VEGFR1 and VEGFR2 in the regulation of
angiogenesis, it should be noted that VEGFR2 plays a primary role in the activation
of many processes in cells related to proliferation, migration and blood vessel
formation. However, the involvement of VEGFRL1 in these processes cannot be
denied either, since experiments with the deletion of the murine gene encoding
VEGFRL1 resulted in pathological vascular development and the embryonic death [5,
11]. It has been shown that VEGFR1 has a much higher affinity for VEGF-A
compared to VEGFR2. However, the level of phosphorylation of VEGFRL1 after
activation is lower than that of VEGFR2, which could explain the more active
participation of VEGFR2 in the regulation of angiogenesis [17, 44]. Another
characteristic of VEGFR1 is the existence of a soluble form of the receptor, sFlt1,
which has an affinity for A-VEGF that is comparable to that of the membrane form
[20]. Since increased VEGFR1 expression leads to a decrease in the concentration
of VEGF-A available to bind to VEGFR2, VEGFR1 is thought to act as a regulator
of signal transduction through VEGFR2 [26].

VEGEF is involved in the development of various cell types, including endothelial
cells, monocytes, macrophages, stem cells, tumor cells, vascular smooth muscle
cells, trophoblast cells, and any other cells that express VEGF receptors [10, 28, 36].
VEGFRL1 is also expressed by NK cells [6]. Many studies have shown high levels of
VEGF-A expression in the placenta, particularly in macrophages, endometrial
glandular cells, leukocytes, endothelial cells, vascular smooth muscle cells, in
villous and extravillous trophoblasts, and in NK cells [8, 18, 19, 36, 37]. Disruption
of VEGF signaling has been shown to be associated with pregnancy complications.
For example, an increase in the concentration of sFltl in serum is a sign of
preeclampsia, as it competes for VEGF binding with membrane VEGF receptors [7,
26, 51]. In addition, the intensity of VEGFR1 expression by syncytiotrophoblasts
was found to be increased in cases of preeclampsia, compared to healthy pregnancies
[51].

Maternal immune cells, particularly NK cells, are an important group of cells in the
trophoblast microenvironment. During the first trimester, this cell population
accounts for approximately 70% of all leukocytes within the decidua, highlighting
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the significance of their functions [1]. NK cells play a crucial role in the
transformation of uterine spiral arteries and the regulation of trophoblastic invasion
into the uterine mucosa [33, 48]. As already mentioned, both trophoblasts and NK
cells have receptors for VEGF and are capable of secreting VEGF. Therefore, they
are able to regulate each other's activity in an autocrine and paracrine way.

The interaction between NK cells and trophoblasts is one of the key factors
supporting the pregnancy, as these cells are involved in the development of placental
tissue. In this regard, the investigation of interactions mediated by both secretory
products and receptors of trophoblasts and NK cells is of great importance. In
particular, in the field of reproductive medicine, a lot of studies have been focused
on the synthesis and reception of VEGF, a factor necessary for angiogenesis.
However, despite this, there are currently insufficient data in the literature on the
effect of VEGF on the functional characteristics of these cells [38]. Therefore, the
aim of this study was to evaluate the role of VEGF in maintaining the viability of
trophoblast and NK cells. To achieve this goal, bevacizumab was used. It is an
antibody that binds to the VEGF-A and prevents it from binding to its receptors [32].
Bevacizumab is already widely used to treat choroidal neovascularization and
diabetes complications [30], as well as various tumors and other abnormal
angiogenesis-related conditions [12, 16, 34]. In this study, we investigated the
surface markers of NK cells and trophoblasts, specifically the MICA and MICB
proteins. These proteins function as stress markers and help determine cell viability.
Additionally, we studied the CD105 receptor, which is expressed on endothelial
cells, trophoblasts, and other cell types. This receptor plays a role in the transmission
of signals from TGF-p family proteins [23].

It has been demonstrated that signals from TGFf play a crucial role during
placentation as they are essential for the differentiation of trophoblast populations
[15, 49]. Disruptions in signaling pathways can lead to pregnancy loss [45]. Using
an endothelial cell model, it has been shown that endoglin regulates TGFP signaling
by directing the signal via the SMAD2/3 or SMAD1/5/8 pathways. Signaling along
the SMAD1/5/8 pathway promotes proliferation and migration of endothelial cells,
thereby stimulating angiogenesis. In contrast, activation of the SMAD2/3 pathway
has an anti-angiogenic effect [23]. Endoglin, according to the literature, inhibits the
signaling pathway involving the SMADS3 protein [14]. Whether endoglin plays a
similar role in NK cells and trophoblasts is currently unknown. However, it has been
demonstrated that SMAD proteins, which are involved in these signaling pathways,
are active in trophoblast cells [4, 47], and only SMAD2/3 have been identified in
NK cells [50].

2 Materials and Methods
2.1 Celllines

The study was conducted using the JEG-3 and NK-92 cell lines (ATCC, USA),
which reflect the main characteristics of extravillous trophoblasts and natural killer
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cells, respectively [13, 21]. The cells were cultured according to the manufacturer's
instructions (ATCC, USA). Recombinant IL-2 (‘Roncoleukin’, BIOTECH, St.
Petersburg, Russia) was used as a growth factor for the NK-92 cells. Cell viability
in all experimental settings was assessed using trypan blue staining. The viability
was at least 95% for each experiment.

2.2 Inductors

Antibodies to VEGF (5000 nM, Avastin, F. Hoffmann — La Roche Ltd., Switzerland,
Germany) were used as inducers.

2.3  Assessment of the phenotype of JEG-3 and NK-92 cells after incubation
in the presence of anti-VEGF antibodies

JEG-3 cells were cultured in 5 mL of medium in 25 cm? flasks (BD, USA) with a
density of 1x10° cells, for 48 hours. After this period, 1.5%10° NK-92 cells were pre-
treated with carboxyfluorescein diacetate succinimidyl ester (CFSE), in accordance
with the manufacturer’s instructions (Sigma-Aldrich, USA). The cells were then
added to part of the flasks. NK-92 cells, stained with CFSE, and intact JEG-3 cells
were used as controls. After that, the mono- and co-cultured cells were treated with
antibodies to VEGF. After a 22-hour incubation period, the JEG-3 cells were
removed from the flasks using a scraper without using a trypsin-versene solution.
The cells were treated with Fc-block reagent (Miltenyi Biotec, Spain) and
monoclonal antibodies against CD94, CD45, CD105, MICA, MICB, NKG2D, and
NKG2A (R&D, BD, USA) in accordance with the manufacturer's instructions.
Appropriate isotypic antibodies (R&D, BD, USA) were used as a control for non-
specific binding. The expression of the markers and cell fluorescence intensity were
evaluated using a FacsCantoll flow cytometer (BD, USA). There were four
biological replicates with one technical replicate for each experiment.

2.4  Assessment of the cytotoxic activity of NK-92 cells toward JEG-3 cells

The cytotoxic activity was assessed as described previously [29]. JEG-3 cells were
cultured in a flask at a concentration of 2.5 x 10"5/10 mL of medium. After 2 hours,
antibodies to VEGF were added to the flask. After culturing for 22 hours, the JEG-
3 cells were washed and stained with a CASE solution following the manufacturer's
instructions (Sigma-Aldrich, USA). The stained JEG-3 cells were removed from the
flasks using trypsin and versene solution and then transferred to the wells of a 96-
well round-bottom plate (BD, USA). Next, NK-92 cells were added to the wells
containing JEG-3 cells at a 10:1 ratio (effector:target). The plate was then
centrifuged for 5 minutes at 100 g. After 4 hours of incubation, the cells were stained
with a propidium iodide solution according to the manufacturer's instructions
(Sigma-Aldrich, USA). The percentage of dead JEG-3 cells was assessed using a
FacsCantoll flow cytometer (BD, USA) following a previously described gating
strategy [29]. There were three biological replicates and two technical replicates in
each experiment.
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2.5 Statistical analysis

GraphPad Prism 8 software was used for statistical analysis. Statistical comparisons
between groups were conducted using a non-parametric Mann-Whitney U test.
Differences were considered significant at p < 0.05.

3 Results

3.1. The expression of MICA and CD105 proteins by JEG-3 cells was altered
in the presence of antibodies to VEGF and NK-92 cells

Analysis of the phenotype of JEG-3 cells revealed that approximately 12% of the
cells express the MICB molecule, approximately 16% express MICA, and 18.5%
express the CD105 receptor (Figure 1A).

The co-culture of JEG-3 cells with NK-92 cells, compared to monoculture, resulted
in a two-fold increase in the percentage of JEG-3 cells expressing the CD105
receptor. The percentage of JEG-3 cells expressing MICA and MICB molecules
remained unchanged under these conditions. Analysis of the mean fluorescence
intensity after co-culture with NK-92 cells compared to monoculture showed no
change in the expression intensity of MICA, MICB, and CD105 proteins by JEG-3.
Analysis of the JEG-3 cells phenotype after its co-culture with NK-92 cells in the
presence of antibodies to VEGF showed a decrease in the percentage of JEG-3 cells
expressing MICA and CD105 proteins compared to the baseline level during co-
cultivation, The percentage of JEG-3 cells expressing the MICB receptor remained
unchanged (Figure 1A).

Co-culture of JEG-3 cells with NK-92 cells, as well as treatment with antibodies to
VEGF, did not affect the intensity of expression of MICA, MICB, and CD105
proteins by the cells (Figure 1B).

3.2. The phenotype of NK-92 cells was affected by the presence of antibodies
to VEGF and JEG-3 cells

Analysis of the NK-92 cell phenotype has revealed that the entire population of
studied cells expresses the NKG2D receptor on their surface and approximately 75%
express the CD94 receptor. Additionally, the MICA protein has been found to be
expressed on 1.5% of the cells, the MICB protein on 10.5%, and the CD105 protein
on 26% (Figure 2).

When co-cultured with JEG-3 cells, NK cells reduced the expression level of CD94,
compared to the level observed during monoculture, including in the presence of
antibodies to VEGF. On the contrary, the percentage of NK-92 cells expressing the
MICA protein increased under conditions of co-culture compared with monoculture.
The percentage of NK-92 cells expressing NKG2D, MICB, NKG2A, and CD105
molecules under co-culture conditions did not change compared to monoculture
(Figure 2). The cultivation of NK-92 cells in the presence of antibodies to VEGF led
to a decrease in the number of cells expressing the CD105 receptor (Figure 2).



163
164
165
166
167
168
169
170

171
172

173
174
175
176

177

178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

Co-culture of NK-92 cells with JEG-3 cells showed an increase in the intensity of
expression of NKG2D, CD94, and CD105 receptors by NK-92 cells compared to
monoculture. The results indicate functional activation of NK cells in the presence
of target cells. Additionally, the intensity of expression of MICA and MICB proteins
by NK cells also increased under co-culture conditions (Figure 3). Treatment of NK
cells with antibodies to VEGF, both in mono- and coculture, leads to a decrease in
the intensity of expression of the CD105 receptor (Figure 3). This result may suggest
changes in TGFp signaling in the absence of VEGF.

3.3 Pretreatment of JEG cells with antibodies to VEGF did not affect their
survival in the presence of NK cells

Analysis of the cytotoxic activity of NK-92 cells toward JEG-3 cells showed that, in
the presence of NK cells, the mortality rate of JEG-3 was higher than the baseline
mortality rate. Pretreatment of JEG cells with antibodies to VEGF did not influence
their viability in the presence of NK cells (Figure 4).

4 Discussion

Trophoblast cells and natural killer cells are important participants in the process of
placentation. Both cell populations are capable of secretion and reception of VEGF.
Previously, it has been found that VEGF affects the proliferation and survival of
trophoblast cells [51]. VEGF also induces activation of NK cells adhesion [27].
Nevertheless, there is a lack of data in the literature on the role this factor plays in
the cell activity. In this regard, we evaluated changes in the phenotype of JEG-3
trophoblast and NK-92 natural killer cells after their mono- or co-culture in the
presence of antibodies to VEGF.

In this study, the expression of CD105, MICA, and MICB proteins was evaluated.
Endoglin (CD105) is a coreceptor for TGF3 which regulates signal transmission
from this factor via the SMAD2/3 or SMAD1/5/8 pathways [23, 24]. In particular,
endoglin has been shown to activate signaling involving SMAD1/5/8 proteins and
inhibit SMADZ2/3 pathway [14, 35]. In endothelial cells, it has been demonstrated
that signaling through the SMADL1/5/8 pathway promotes proliferation and
migration of the cells, whereas activation of the SMAD2/3 pathway has an
angiostatic effect [23]. Therefore, a high level of endoglin expression may indicate
a more active transmission of signals through SMAD1/5/8 proteins compared to
SMAD2/3. MICA and MICB are stress-induced molecules that are expressed by
various cell populations, including immune cells [41]. An increase in the expression
of these proteins was observed in tumor cells. MICA/B transcripts have been found
in placental samples. The levels of mic mRNA are higher in samples taken from
patients with preeclampsia compared to those from healthy patients. [2, 42]. The
analysis of the levels of expression of these markers allows us to assess the
physiological state of trophoblast cells and monitor the conditions under which they
experience stress.
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In this work, we showed that JEG-3 trophoblast cells express all three markers.
Under conditions of co-culture with NK cells, the number of trophoblast cells
expressing endoglin increased. This result suggests a possible increased role for
endoglin in mediating the transmission of TGFf signals in trophoblast cells in the
presence of natural Killer cells. It also suggests a potential alteration in signaling
pathways, from the SMAD2/3 pathway to the SMAD1/5/8, which may activate
trophoblast proliferation. The treatment of the cell co-culture with antibodies to
VEGEF led to a decrease in the level of endoglin expression by trophoblasts to the
initial level observed during monoculture. At the same time, under monoculture
conditions, the endoglin level remained constant regardless of the presence of
antibodies to VEGF. Apparently, TGFf signaling is regulated by VEGF and its
absence in the cell co-culture prevents the changes that occur in trophoblast cells
when they are exposed to NK cells. It has also been shown that activation of
SMAD?2/3 in trophoblast cells leads to the secretion of VEGF-A [25]. Based on this,
it can be assumed that trophoblast cells use the mechanism of suppression of CD105
expression in order to activate VEGF secretion.

Later, we evaluated how treatment of trophoblast cells with antibodies to VEGF
affected their survival in the presence of natural killer cells. NK cells successfully
killed trophoblast cells, however, treatment with the antibodies did not cause any
changes in the resistance of trophoblast cells to the cytotoxic activity of NK cells.
The results obtained suggest that VEGF deprivation leads to the previously
described effects associated with changes in signal transduction from TGFf in
trophoblast cells only when they are co-cultured with natural killer cells.

Not only NK cells are able to influence the activity of trophoblast, but trophoblast
cells also play a role in placentation by activating various mechanisms that regulate
NK cell function. [40, 43, 46]. Taking this into account, we evaluated the effect of
trophoblast cells and VEGF antibodies on the expression by NK cells of the
activating NKG2D receptor (whose ligands are MICA/B molecules), CD94 receptor
(whose ligand is the HLA-E molecule expressed by trophoblast), as well as MICA,
MICB, and CD105 proteins. The analysis showed that treatment with the antibodies
caused a decrease in the expression of CD105 by NK cells in both mono- and co-
culture conditions. Since there is no data in the literature on the existence of the
SMAD1/5/8 pathway in NK cells, it can be assumed that the treatment with
antibodies to VEGF leads to a decrease in the role of endoglin in signaling from
TGFB. As a coreceptor, endoglin not only directs signals from TGEFf, but also
regulates the strength of the binding between receptor and other proteins of TGFf
family, such as activin A, BMP-2, -7, -9, and -10, which are also able to affect the
cell functions. [31].

Treatment with antibodies to VEGF did not affect the expression of the other studied
markers by NK cells. Evaluation of the phenotype of NK cells showed that they
expressed NKG2D at a high level, both when mono- and co-cultured with
trophoblast. Evaluation of the phenotype of NK cells showed that they expressed
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NKG2D at a high level, both when mono- and co-cultured with trophoblast. In
addition, the intensity of expression of this receptor increased upon co-culture
conditions, suggesting that NK cells activate the NKG2D-MICA/B pathway when
performing cytotoxic functions. As for the CD94 receptor, there was a decrease in
the number of cells expressing this receptor following co-culture with trophoblast
cells. However, the intensity of its expression increased, which may indicate the
differentiation of NK cell populations under the influence of factors secreted by
trophoblast cells. This results in the formation of cells that are more sensitive to the
HLA-E ligand on the surface of trophoblast cells. [9, 29]. With regard to MICA/B
markers, it has been observed that their expression in NK cells was increased under
co-culture conditions. This is likely due to the cells undergoing a stress response.

Thus, VEGF plays an important role in regulating the activity of trophoblasts and
natural killer cells. In particular, the lack of VEGF-A during trophoblast and NK cell
co-culture leads to inhibition of CD105 expression by trophoblast cells, which can
lead to activation of SMAD?2/3 signaling pathways in cells that inhibit cell
proliferation. At the same time, treatment of trophoblast cells with antibodies to
VEGF for 22 hours did not cause changes in their resistance to the cytotoxic activity
of natural Killer cells. This suggests that antibodies to VEGF have an inhibitory
effect on trophoblast cells only when they are co-cultured with NK cells. In addition,
the isolation of VEGF using antibodies caused a decrease in the level of expression
of CD105 by NK cells. This indicates that, in the absence of VEGF, the role of this
coreceptor in TGFf signaling decreases. Since the existence of the SMADI1/5/8
pathway in NK cells has not been established, it is possible that in the absence of
endoglin, the sensitivity of these cells to other TGF family proteins, such as activin
A and BMP-2, 7, 9, and, 10, may change. Together, the results indicate that VEGF
deprivation causes significant changes in the reception of TGFp family proteins by
trophoblast cells and natural killer cells. In addition, the data obtained provide an
experimental basis for the search for new diagnostic methods in certain forms of
obstetric pathology, particularly preeclampsia. In this condition, the assessment of
VEGF levels and its functional antagonists, sFlt and endoglin, is of great importance
in understanding the pathogenesis of the disease.
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PUCYHKU

Figure 1. The percentage of trophoblast cells (JEG-3) expressing MICA, MICB, and
CD105 proteins (A), and the intensity of expression of these markers (B) in the
presence of antibodies against VEGF (antiVEGF) in mono- and co-culture with
natural killer cells (NK-92). Differences from isotype control: *** - p<0.001.
Differences between groups: # - p<0.05; ### - p<0.001.
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Figure 2. The percentage of natural killer cells (NK-92) expressing NKG2D, CD94,
CD105, MICA, and MICB proteins in the presence of antibodies to VEGF
(antiVEGF) in mono- and co-culture with trophoblast cells (JEG-3). Differences
from isotype control: *** - p<0.001. Differences between groups: # - p<0,05; ### -
p<0,001.
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Figure 3. The intensity of expression of NKG2D, CD94, CD105, MICA, and MICB
proteins by natural killer cells (NK-92) in the presence of antibodies against VEGF
(antiVEGF) in mono- and co-culture with trophoblast cells (JEG-3). Differences
from isotype control: *** - p<0.001. Differences between groups: # - p<0.05; ## -
p<0.01; ### - p<0.001.
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Figure 4. Cytotoxicity of NK-92 cells toward JEG-3 cells pretreated with antibodies
to VEGF (antiVEGF). Significant difference.
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