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Pesrome

CoBpeMEeHHbIE HCCIIECOBAaHUSL POJM KHUIIEYHOM MHUKPOOUOTHI y JKUBOTHBIX U
YyeJIoBeKa IMOKA3bIBAIOT, YTO MHMKPOOPTaHU3MBI SBIISIETCS BaXKHBIM (PaKTOPOM,
OTPENEIAIONMM 3/I0PDOBbE XO35MHA W YYAaCTBYIOT B MAaTOr€HE3€ pa3IMYHBIX
MH(DEKIIMOHHBIX U HEMH(PEKIMOHHBIX 3a00eBanuil. B HacTosee BpemMsi akTUBHO
UCCIENYIOTCS MEXaHU3Mbl (POPMUPOBAHUSA (DYHKIIMOHAIBHOM OCH «KHIIIEYHUK-
Jerkue» mnpu HOBOM kopoHaBupycHoi uHexunu COVID-19, rae xemyaouHo-
KUIIEYHBIN TPaKT MOXKET SIBJSATHCS BXOJHBIMU BOPOTaMHU MH(EKINH, yKa3bIBas Ha
BOBJICUCHHE KHIIEYHOM MUKPOOMOTHI B HMH(EKIHOHHBIN mporecc. C omHOU
CTOPOHBI, W3MEHEHHWE MHUKPOOMOTHI TAIMEHTOB (IUCcOM03), WHPUIIUPOBAHHBIX
BupycoMm SARS-CoV-2, saBnsercss omHuM u3 (PAKTOpOB Pa3BUTHS BTOPUUYHOU
OaxkTepuanbHOM MH(EKIHUH, CENCcuca, CUCTEMHOTO BOCHAJIECHUS U MOJUOPTaHHON
HepoctaToyHocTu. C Apyrodl CTOPOHBI, HapylIEHHE MHKPOOMOTHI KHUIIEYHUKA
CIOCOOCTBYET Pa3BUTHIO TSKEIOTO TEUEHUS U JIETATIbHOIO MCX0/a Y MAIllUEHTOB U3~
3a IByHAIIPaBJICHHOW CBSI3U KHUILIEYHOW MHKPOOMOTHI YEPE3 CUCTEMY MMMYHUTETA
nocpencTBoM NUTOKMHOB.  [lokazana cBsa3p crtenenu Tsokectn COVID-19 y
NAIMeHTOB C YpPOBHEM IIMTOKWHOB U BBISBICHHEM B KHIIEYHOM OHOTOIE
ONPEJEIECHHBIX BHUIOB «IPOBOCHAIMUTENBHBIX» WU «IPOTUBOBOCHAIATEIBHBIX)
Oaxtepuii. immyHonornueckue HapymieHus y manueHtoB ¢ COVID-19 rtakke
OMOCPEIOBaHbl M3MEHEHHEM mnpodwist metadbosoma Ha (OHE JAUCOMOTHYECKUX
HapyleHUuii MUKpOOUOThl. CBSA3b MEXKIY COCTaBOM MHUKPOOMOTHI KHIIEYHUKA,
YPOBHSIMU LIMTOKWHOB U BOCTIAJIUTENIbHBIMU MapKepaMH MO3BOJISIET MPEANIOI0KUTh,
4YTO MHMKPOOMOM KHUIIIEYHUKA BJIMSET Ha Pa3BUTHE M TEUYEHHE KOPOHABUPYCHOU
UHpEKINU, a «CUMOMOTMYECKHI MOTEHIHa» HOPMOOMOTHI MOXET OBITh
UCIIOJIb30BaH JJIsl pa3pabOTKU Mep MPOPHIAKTUKH U peaOuIUTAlUKA MalUeHTOB.
DTOMY MOXET CITIOCOOCTBOBATH Pa3BUTHE HCCIIEIOBAHUI B HANPABICHUU MPOOJIEMbI
CUMOMO3a YEJIOBEKa W MHUKPOOUOTHL. P KIIIOYEBBIX MEXaHU3MOB H3YUYEHUS
uHTEerpanuu Oupuao0aKTepuil W JAKTOOAIMIUT C XO3SWHOM, OMOCPEIOBAaHHBIC
CUCTEMOM HWMMYHUTETa, TOPMOHOB W HEMPOMEAMATOPOB, OTKPHIBAIOT HOBBIE
NEPCTIEKTUBBl NI MEIUIMHBI, BKJIIOYAsl MOJyY€HHE HOBBIX NPOOHMOTHYECKHX
[MITAMMOB Pa3JMYHOM IIE€NIEBOM YCTAaHOBKH ISl JieueOHO-TIPO(UIAKTHIECKON
KOPpEKIIUM HapyIIeHHBIX (YHKIMH opraHu3Ma. M3yueHne MUKpOCUMOUOIICHO3a,
KaK OJHOr0 M3 BEKTOPOB AaCCOLIMATUBHOTO CHUMOMO3a, MO3BOJMIO pa3paboTaTthb
METOJI MEKMUKPOOHOTO PacClO3HABAHUS «CBOM-UYXOW», T/l B KAYECTBE TECTOBOU
pacro3HaIIe KyJlIbTyphl HCIOJNB3YIOTCS OuUA00aKTepuu, T.K. I «CBOMX»
HITAMMOB XapaKTEPeH CUHEPTHU3M (MOAIEPAKKa), TOT/Ia KaK MPHU BCTPEUE C «UyKOU
KJIETKOW» - aHTaroHu3M. VIMEHHO 3TOT (yHAaMEHTalIbHBI MEXaHU3M MOXKHO
UCIIOJIb30BaTh MpHU OTOOpPE «CBOUX» I XO35MHA IITAMMOB, MPUTOIHBIX JIs
CO37aHusl IPOOUOTHYECKOW KOMITO3UIIUH.

KawueBsbie ciaoBa: COVID-19; mukpobuora; oCh «KHIICUHUK-JIETKUEY;
cUMOM03; OMpuI00aKTepUn; UMMYHHBIN OTBET; MPOOUMOTUKH.



Abstract

Modern studies of the role of the intestinal microbiota in animals and humans show
that microorganisms are an important determinant of host health, participating in the
pathogenesis of various infectious and non-infectious diseases. Currently, the
mechanisms of formation of the functional gut-lung axis in the new coronavirus
COVID-19 infection are being actively investigated. The gastrointestinal tract may
be the point of entry for infection, indicating the involvement of the intestinal
microbiota in the infectious process. On the one hand, changes in the microbiota
(dyshiosis) in SARS-CoV-2 patients is one of the factors contributing to the
development of secondary bacterial infection, sepsis, systemic inflammation and
multi-organ failure. On the other hand, impaired gut microbiota contributes to the
development of severe course and mortality in patients due to bidirectional coupling
of the gut microbiota through the immune system via cytokines. The studies have
shown a link between the severity of COVID-19 in patients with the level of
cytokines and the presence of particular types of “pro-inflammatory” and “anti-
inflammatory” bacteria in the intestinal biotope. Immunological abnormalities in
COVID-19 patients are also mediated by metabolome profile alteration associated
with dysbiotic microbiota disturbances. The connection between the composition of
the gut microbiota, cytokine levels and inflammatory markers suggests that the gut
microbiome influences the progression of coronavirus infection, and the "symbiotic
potential” of the normobiotic microbiota can be used to develop prevention and
rehabilitation measures for patients. This can be facilitated by the development of
research towards the problem of human-microbiota symbiosis. A number of key
mechanisms for studying the integration of bifidobacteria and lactobacilli with the
host, mediated by the system of immunity, hormones and neurotransmitters, open
new perspectives for medicine, including obtaining new probiotic strains of different
targeting for therapeutic and preventative correction of impaired functions of the
organism. The study of microsymbiocenosis as one of the vectors of associative
symbiosis has enabled the development of a method of intermicrobial “friend or foe
identification”, where bifidobacteria are used as a diagnostic culture, since
“friendly” strains are characterised by synergism (support), whereas encountering a
"foreign cell" leads to antagonism. This fundamental mechanism may be used for
choosing the “host-friendly” bacteria strains eligible for the creation of a probiotic
composition.

Keywords: COVID-19; microbiota; gut-lung axis; symbiosis; bifidobacteria;
Immune response; probiotics.
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1 Introduction

The emergence of the new COVID-19 coronavirus infection has posed the problems
connected to quick diagnostics and provision of health care to patients. Currently,
intensive study of the clinical and epidemiological features of the disease and the
development of new means of its prevention and treatment continues. In this regard,
it is of interest to discuss the role of microbiota in the new COVID-19 coronavirus
infection and the possibility of using symbiotic relations between humans and
microbiota in the development of therapeutic and preventative measures.

The relation of patients’ gut microbiota with new COVID-19 coronavirus
infection. Currently, the association of the gut microbiota with various human
pathologies is receiving particular attention from researchers [20, 61, 62] due to the
COVID-19 pandemic. A number of recent publications indicate that the severity of
the course and consequences of COVID-19 are associated with the intestinal
microbiota of infected patients [2, 16, 71].

SARS-CoV-2 virus can travel from the lungs to gastrointestinal biotopes [58]. It was
found that coronavirus RNA was detected not only in respiratory secretions but also
in the faeces of patients for more than one month after the onset of the disease [75].
In addition to acute respiratory syndrome, many patients with COVID-19 had
extrapulmonary manifestations (nausea, vomiting, loss of appetite, diarrhoea) [14,
63], liver dysfunction and exacerbation of chronic inflammatory bowel disease [32].
Moreover, in some cases, signs of intestinal disorders in patients appeared even
before pneumonia was detected [42].

The gastrointestinal tract is thought to play a key role in the development of
infection, in particular through higher expression of ACE2 receptors on intestinal
enterocytes compared to lung tissue cells [28, 40, 57, 76]. The binding of the virus
to human ACEZ2 indicates that significant amounts of SARS-CoV-2 virus capable of
regulating amino acid transport, affecting the quantitative and qualitative
composition of the intestinal microbiota and inducing inflammation may be present
in the intestine, especially in colonocytes [30, 64]. All this confirms that the
gastrointestinal tract may be the point of entry of infection and indicates the
involvement of the intestinal microbiota in the infectious process in the new
COVID-19 coronavirus infection and the formation of a functional gut-lung axis [4,
65]. The link between the gastrointestinal tract and the respiratory tract has also been
shown in studies on the effect of respiratory viral infections on the composition of
the intestinal microbiota with the subsequent development of intestinal dysbiosis
[27]. Thus, patients with COVID-19 had significant microecological disorders in the
large intestine compared to the control group, characterised by an increase in the
proportion of opportunistic microorganisms associated with a decrease in the level
of representatives of normal microbiota [21, 74]. It is noted that the composition of
the gut microbiome was significantly altered in patients with COVID-19 compared
to patients without the coronavirus infection, regardless of whether they were taking
medication. Gut dysbiosis persisted even after SARS-CoV-2 was eliminated, and
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respiratory symptoms disappeared. A pilot study by Chinese scientists found
changes in the gut microbiome in patients with COVID-19 compared with the
control group, characterised by an increase in the number of fungal pathogens of the
genus Candida and Aspergillus [3, 82].

To date, disruption of the gut microbiota is thought to contribute to the severe course
and fatal outcome of novel COVID-19 coronavirus infection because of the
bidirectional coupling of the gut microbiota with the immune and respiratory
systems [3]. The formation of microecological disorders leads to increased
permeability of the large intestine and, as a consequence, appears to be one of the
factors in the development of secondary bacterial infection, sepsis, systemic
inflammation and multi-organ failure [24, 52, 56]. Large intestinal dysbiosis has also
been found to be associated with various chronic human conditions such as asthma,
arthritis, obesity and type 2 diabetes [4, 31, 67]. Previously, bacterial translocation
from the gut to the lungs has been identified in sepsis and acute respiratory distress
syndrome [17].

Immune regulation impairment mediated by intestinal microbiota in COVID-
19. Changes in the microbiota of patients infected with SARS-CoV-2 virus are
naturally accompanied by immunological rearrangements and the suppression of T-
cell immunity [66, 81]. A number of researchers have shown a correlation between
the severity of COVID-19 in patients and the level of cytokines, which, in turn, have
been associated with the detection of certain types of "pro-inflammatory" or "anti-
inflammatory" bacteria in the intestinal biotope [37, 43, 46, 51, 78], confirming the
role of the microbiota in immune dysregulation. The composition of patients' gut
microbiota has been found to be associated with plasma concentrations of aspartate
aminotransferase (AST), chemokine receptor (CXCL10), CRP and lactate
dehydrogenase (LDH) [78]. On the other hand, the induction of mediators of the
inflammatory cascade further aggravates gut dysbiosis by disrupting the immune
homeostasis of the biotope and the relationship between the resident microbiota and
the gut immune system, leading to excessive pathological inflammation or chronic
inflammatory diseases. This is supported by a study of blood samples from COVID-
19 patients which showed a correlation between gut dysbiosis, the increased quantity
of inflammatory mediators and the severity of systemic inflammation [5, 36, 78].

Immunological disorders in patients with COVID-19 are also mediated by changes
in the metabolome profile that occur naturally against the background of dysbiotic
microbiota disorders [19]. Short-chain fatty acids (SCFAS), bile acids, amino acids,
carbohydrates, and neurotransmitters are known to be among the significant
immunoregulatory metabolites of the microbiota [34, 48]. Recent studies have
demonstrated the ability of butyrate produced by the gut microbiota to affect the
membrane receptor ACE2, inactivate viral spike protein and inhibit SARS-CoV-2
virus replication [41]. A decrease in or disappearance of butyrate-producing bacteria
in the biotope, along with an increase in pro-inflammatory mediators (C-reactive
protein, IL-6 and sIL2R), has been found in patients in severe and critical conditions
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[59]. Other studies have shown the ability of ursodeoxycholate produced by bacteria
of the genus Collinsella to block virus attachment to ACE2 receptors [53] and inhibit
pro-inflammatory cytokines [38], preventing the development of cytokine storm [1].
The blocking of cytokine storm was also found on the model of Bacteroidetes
bacteria through inhibition of toll-like receptor 4 (TLR4) and signalling pathways
related to the ACE2 receptor [22, 70]. The disruption of the biosynthesis of SCFAS
and L-isoleucine, associated with high levels of CRP and CXCL10 in plasma, was
attributed to the disappearance of the bacterium Faecalibacterium prausnitzii [44,
77, 79]. It was found that amino acids produced by bacteria were positively
correlated with high levels of pro-inflammatory cytokines (CXCL9, CXCL10, IFN-
v and IL-6) and negatively correlated with low levels of cytokines IL-9 and IL-17 in
COVID-19. The content of biogenic amines had a positive correlation with low
levels of cytokines CCL22, IL-12 and IL-13, but negatively correlated with high
levels of pro-inflammatory cytokines (IL-6 and IL-10) [48]. Other microbial
neurotransmitters such as tryptophan and polygammaglutamic acid (gamma-PGA)
stimulated dendritic cells to polarise CD4+ cells towards Th1 [29].

Giron LB et al (2021) found a decrease in citrulline (a marker of intestinal function),
an increase in succinic acid (a marker of dysbiosis) and an increase in the
kynurenine/tryptophan ratio in severe COVID-19. Citrulline was inversely
correlated with IL-6, while succinic acid level and kynurenine/tryptophan ratio were
positively correlated with IL-6 concentration [25].

Disruption of intestinal barrier integrity is considered to be one of the key inducers
of systemic inflammation in COVID-19, as it promotes translocation of microbial
cells or their components into the systemic bloodstream and stimulation of
proinflammatory cytokine secretion, and may lead to the development of a cytokine
storm [55, 72]. Lipopolysaccharides (LPS), peptidoglycan (PGN), zonulin, B-glucan
and lipopolysaccharide binding protein (LBP) have been found to be indicators of
intestinal barrier dysfunction in the plasma of COVID-19 patients associated with
the regulation of immune response [25]. It is known that zonulin, B-glucan and LBP
are positively correlated with factors of systemic inflammation and immune
activation, including CRP, IL-6 and IL-10. In addition, increased permeability and
microbial translocation may contribute to microbiota-mediated myeloid
inflammation. As expected, levels of monocyte and neutrophil inflammatory
markers (soluble CD14 (sCD14) and myeloperoxidase (MPO)) were elevated in the
group of patients with severe COVID-19 compared to the group of patients with
mild COVID-19 and the control group. In addition, plasma concentrations of pro-
inflammatory cytokines IFN-y, IL-6, IL-8, MCP-1, macrophage inflammatory
protein (MIP)-1a, MIP-1p, and TNF-a were elevated in COVID-19 patients [55].

Role of normal microbiota in the formation of biotope immune homeostasis. It
Is known that the physiological role of the gut microbiota, and, first of all, of the
normal microbiota (bifido- and lactobacilli) is largely related to the ability of
prokaryotes to regulate the development and function of the innate and adaptive
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human immune system [49]. Intestinal microsymbionts influence the secretion of
antimicrobial peptides, pro- and anti-inflammatory cytokines, compete for nutrients
and habitat, thus contributing to the maintenance of homeostasis [47]. One of the
mechanisms of microbiota immune regulation is the ability to influence the
production of a certain type of regulatory molecules - cytokines as growth factors
and stimulation/suppression of their synthesis [15,39]. Some pathogenic and
opportunistic bacteria secrete enzymes that allow microorganisms to cleave basic
types of organic macromolecules. It is known that signalling molecules of the
intestinal microbiota (short-chain fatty acids such as butyrate, acetate, propionate,
and secondary bile acids) are able to regulate pro- and anti-inflammatory responses
in the human body [50]. Immune homeostasis of the intestine is regulated by T-reg
cells which are ultimately controlled by members of the normal human microbiota
(bifido- and lactobacilli) through the toll-like receptor (TLR) system and nucleotide
binding receptors (NOD) [60]. Inactivation of cytokines (antipeptide activity) [3],
which are the product of activated T-lymphocytes, macrophages, dendritic cells,
may entail significant disturbances in the mechanisms of innate and adaptive
immunity. The balance of these regulatory molecules is important for human
homeostasis, as cytokines participate in the regulation of the immune response
during infection [12]. The production of cytokines in response to the presence of
microorganisms implies not only indirect (through the regulation of immunity), but
also direct contact of bacteria with these signalling molecules. This fact has
significance in the development of complications in the new COVID-19 coronavirus
infection, since one of the mechanisms of pathogenesis is the generation of a
cytokine storm. The excessive immune response to the virus (cytokine storm)
eventually causes multi-organ failure and patient mortality; therefore, a balanced
Immune response is needed, where an over- or under-reactive immune system
response may equally exacerbate complications such as pneumonia and ARDS in
new COVID-19 coronavirus infection. Healthy gut microbiome may be critical for
maintaining optimal immune system function.

The management of microecological disorders of intestinal microbiota via
bifidobacteria and lactobacilli normalises immune reactions and may be one of the
ways to prevent complications, as well as reduce the risks of SARS-CoV-2 disease.
Thus, administration of probiotic strains such as Bifidobacterium lactis to healthy
elderly volunteers resulted in a significant increase in the proportion of mononuclear
leukocytes and NK cells [23]. It is known that the composition of intestinal
microbiota, primarily normobiota (bifido- and lactobacilli), has a great influence on
the effectiveness of pulmonary immunity [6]. Animal experiments have shown that
the ability to eliminate pathogens in the lungs was impaired in mice deprived of gut
microbiota [18]. Disruption of the gut microbiota (dysbiosis) by the widespread use
of antibiotics may also have an effect similar to that observed in population studies
showing that inappropriate and uncontrolled use of antibacterial drugs such as
penicillins, cephalosporins, macrolides and quinolones correlates with an increased
risk of lung cancer in humans [7].
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The use of probiotic medicines based on Lactobacillus and Bifidobacterium cultures
has demonstrated positive results in the realisation of anti-inflammatory and
immunoregulatory response of the organism [73]. It was found that the
administration of some strains of probiotic bacteria (Lacticaseibacillus rhamnosus,
Bifidobacterium lactis and Bifidobacterium breve) to experimental animals
promotes the proliferation of T-reg-lymphocytes, suppressing inflammatory and
allergic reactions in the organism [20], and administration of lactobacilli
(Lacticaseibacillus casei Shirota or Lacticaseibacillus rhamnosus GG) to patients
with cystic fibrosis leads to improvement of their condition [73].

Prospects for the development of targeted probiotics. It is now assumed that
probiotic bacteria can be used for preventative or therapeutic purposes of inducing
hormonal and immune changes in the body, since the participation of normobiotics
(on the model of lactobacilli) in the regulation of the production of the neuropeptide
hormone, oxytocin, has been proved [54, 69]. These studies are of interest because
oxytocin is considered to be one of the possible candidates for the treatment of
COVID-19. Oxytocin is known to be able to exert a dual action: to mobilise the
immune defence potential and suppress excessive reactions of innate immunity, to
limit pro-inflammatory (cytokine storm) and oxidative stress reactions by reducing
cytokine levels. It has been suggested that even if oxytocin does not have a direct
antiviral action, it still has sufficient mechanisms that may make it effective against
COVID-19 through immunomodulatory, cardioprotective, antidiabetic and anabolic
functions [35]. A number of studies have shown that some strains of normobiota
(living cells and their components) are able to stimulate oxytocin and have
immunoregulatory activity [54].

Of particular interest for COVID-19 treatment and prevention is nitric oxide (NO),
which is a key signalling molecule that acts as a modulator of the host response in
viral infections [68, 80]. At the same time, the microbiota is one of the sources of
nitric oxide production directly [45] or indirectly through the induction of immune
cells [10].

One of the problems arising in the use of biological medicines (synbiotics,
probiotics, etc.) is the gradual decrease in the level of their antagonistic activity [11,
26], which ultimately affects the therapeutic and preventive efficacy of drugs. Also,
one of the reasons for the low levels of effectiveness or its absence of probiotics is
their foreignness to microorganisms [13]. Currently, as an alternative, for the
correction of human dysbiosis, it is proposed to use one’s own strains of
bifidobacteria (autostrains), that are biocompatible, due to which they effectively
form a biofilm with other representatives of the indigeneous microbiota under the
conditions of microsymbiocenosis, in contrast to industrial strains of bacteria, which
are not always able to colonise the human intestine [33].

When creating a consortium of microorganisms of probiotic action, bacterial strains
are also selected without taking into account their biocompatibility in the
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composition, which can lead to suppression of microorganism viability and loss of
their practically significant properties.

Two described biological universal phenomena of a fundamental nature contribute
greatly to the solution of these problems: 1) associative symbiosis [9]; 2) bacterial
persistence [8].

The study of microsymbiocenosis as one of the vectors of associative symbiosis
allowed developing a method of intermicrobial “friend or foe” identification, where
bifidobacteria are used as a diagnostic culture, since “friendly” strains are
characterised by synergism (support), whereas encountering a “foreign cell” leads
to antagonism. This fundamental mechanism may be used for choosing the “host-
friendly” bacteria strains eligible for the creation of a probiotic composition. In this
regard, one of the priority directions in the design of microbial compositions of pro-
and synbiotics may be the use of the phenomenon of microbial “friend or foe”
identification, which has proven itself well for the assessment of foreignness of E.
coli strains [12].

As for another fundamental phenomenon, persistent potential of bacteria which
fulfils the role of a "microbial biotarget”, these adaptation characteristics may be
used to solve an equally important task, the assessment of biocompatibility of
microbial cultures, since preliminary studies have shown their full suitability for the
specified purpose. Based on the method of intermicrobial identification, the
principle of biocompatibility of probiotic cultures of microorganisms was
formulated based on the oppositional (amplification/suppression) phenomenon of
regulatory relations of microsymbionts, where it is possible to apply quantitative
determination of the degree of biocompatibility of cultures based on the adaptive
potential (biofilm formation and anti-lysozyme test) of bacteria. Such a two-in-one
combination - inclusion of biocompatibility assessment of microsymbionts with
simultaneous determination of “friend-foe” - can form the basis for selection of
probiotic strains and formation of new drug compositions based on them [10, 12].
2 Conclusion

Thus, modern studies of the role of intestinal microbiota in animals and humans
show that the intestinal microbiota is an important factor determining health,
influencing immunity, participating in the pathogenesis of various infectious and
non-infectious diseases. The pronounced contribution of the intestinal
microsymbiocenosis is realised through the maintenance of a number of
physiological functions and the formation of homeostasis of the host organism. The
association between gut microbiota composition, cytokine levels and inflammatory
markers in COVID-19 patients suggests that the gut microbiome influences the
severity of the course of coronavirus infection. A number of key mechanisms for
studying the integration of bifidobacteria and lactobacilli with the host, mediated by
the system of immunity, hormones and neurotransmitters, open new perspectives for
medicine, including obtaining new probiotic strains of different targeting for
therapeutic and prophylactic correction of disturbed body functions.
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